Copyright © 1988, ’89, ’90, ’91, ’92, ’93 Free Software Foundation, Inc.
Published by the Free Software Foundation
675 Massachusetts Avenue,
Cambridge, MA 02139 USA
Printed copies are available for $20 each.
ISBN 1-882114-11-6
Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The purpose of a debugger such as {No value for ‘GDBN’} is to allow you to see what is going on “inside” another program while it executes—or what another program was doing at the moment it crashed.
{No value for ‘GDBN’} can do four main kinds of things (plus other things in support of these) to help you catch bugs in the act:
You can use {No value for ‘GDBN’} to debug programs written in C or C++. For more information, see Supported languages.
Free software | Freely redistributable software | |
Contributors to GDB |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} is free software, protected by the GNU General Public License (GPL). The GPL gives you the freedom to copy or adapt a licensed program—but every person getting a copy also gets with it the freedom to modify that copy (which means that they must get access to the source code), and the freedom to distribute further copies. Typical software companies use copyrights to limit your freedoms; the Free Software Foundation uses the GPL to preserve these freedoms.
Fundamentally, the General Public License is a license which says that you have these freedoms and that you cannot take these freedoms away from anyone else.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Richard Stallman was the original author of GDB, and of many other GNU programs. Many others have contributed to its development. This section attempts to credit major contributors. One of the virtues of free software is that everyone is free to contribute to it; with regret, we cannot actually acknowledge everyone here. The file ‘ChangeLog’ in the GDB distribution approximates a blow-by-blow account.
Changes much prior to version 2.0 are lost in the mists of time.
Plea: Additions to this section are particularly welcome. If you or your friends (or enemies, to be evenhanded) have been unfairly omitted from this list, we would like to add your names!
So that they may not regard their long labor as thankless, we particularly thank those who shepherded GDB through major releases: Fred Fish (releases 4.12, 4.11, 4.10, 4.9), Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, 4.4), John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9); Jim Kingdon (releases 3.5, 3.4, 3.3); and Randy Smith (releases 3.2, 3.1, 3.0). As major maintainer of GDB for some period, each contributed significantly to the structure, stability, and capabilities of the entire debugger.
Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and Richard Mlynarik, handled releases through 2.8.
Michael Tiemann is the author of most of the GNU C++ support in GDB, with significant additional contributions from Per Bothner. James Clark wrote the GNU C++ demangler. Early work on C++ was by Peter TerMaat (who also did much general update work leading to release 3.0).
GDB 4 uses the BFD subroutine library to examine multiple object-file formats; BFD was a joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
David Johnson wrote the original COFF support; Pace Willison did the original support for encapsulated COFF.
Adam de Boor and Bradley Davis contributed the ISI Optimum V support. Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS support. Jean-Daniel Fekete contributed Sun 386i support. Chris Hanson improved the HP9000 support. Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support. David Johnson contributed Encore Umax support. Jyrki Kuoppala contributed Altos 3068 support. Keith Packard contributed NS32K support. Doug Rabson contributed Acorn Risc Machine support. Chris Smith contributed Convex support (and Fortran debugging). Jonathan Stone contributed Pyramid support. Michael Tiemann contributed SPARC support. Tim Tucker contributed support for the Gould NP1 and Gould Powernode. Pace Willison contributed Intel 386 support. Jay Vosburgh contributed Symmetry support.
Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.
Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about several machine instruction sets.
Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote debugging. Intel Corporation and Wind River Systems contributed remote debugging modules for their products.
Brian Fox is the author of the readline libraries providing command-line editing and command history.
Andrew Beers of SUNY Buffalo wrote the language-switching code, and contributed the Languages chapter of this manual.
Fred Fish wrote most of the support for Unix System Vr4. He also enhanced the command-completion support to cover C++ overloaded symbols.
Hitachi America, Ltd. sponsored the support for Hitachi microprocessors.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can use this manual at your leisure to read all about {No value for ‘GDBN’}. However, a handful of commands are enough to get started using the debugger. This chapter illustrates those commands.
One of the preliminary versions of GNU m4
(a generic macro
processor) exhibits the following bug: sometimes, when we change its
quote strings from the default, the commands used to capture one macro
definition within another stop working. In the following short m4
session, we define a macro foo
which expands to 0000
; we
then use the m4
built-in defn
to define bar
as the
same thing. However, when we change the open quote string to
<QUOTE>
and the close quote string to <UNQUOTE>
, the same
procedure fails to define a new synonym baz
:
$ cd gnu/m4 $ ./m4 define(foo,0000) foo 0000 define(bar,defn(`foo')) bar 0000 changequote(<QUOTE>,<UNQUOTE>) define(baz,defn(<QUOTE>foo<UNQUOTE>)) baz C-d m4: End of input: 0: fatal error: EOF in string
Let us use {No value for ‘GDBN’} to try to see what is going on.
$ {No value for `GDBP'} m4 GDB is free software and you are welcome to distribute copies of it under certain conditions; type "show copying" to see the conditions. There is absolutely no warranty for GDB; type "show warranty" for details. GDB {No value for `GDBVN'}, Copyright 1993 Free Software Foundation, Inc... ({No value for `GDBP'})
{No value for ‘GDBN’} reads only enough symbol data to know where to find the rest when needed; as a result, the first prompt comes up very quickly. We now tell {No value for ‘GDBN’} to use a narrower display width than usual, so that examples fit in this manual.
({No value for `GDBP'}) set width 70
We need to see how the m4
built-in changequote
works.
Having looked at the source, we know the relevant subroutine is
m4_changequote
, so we set a breakpoint there with the {No value for ‘GDBN’}
break
command.
({No value for `GDBP'}) break m4_changequote Breakpoint 1 at 0x62f4: file builtin.c, line 879.
Using the run
command, we start m4
running under {No value for ‘GDBN’}
control; as long as control does not reach the m4_changequote
subroutine, the program runs as usual:
({No value for `GDBP'}) run Starting program: /work/Editorial/gdb/gnu/m4/m4 define(foo,0000) foo 0000
To trigger the breakpoint, we call changequote
. {No value for ‘GDBN’}
suspends execution of m4
, displaying information about the
context where it stops.
changequote(<QUOTE>,<UNQUOTE>) Breakpoint 1, m4_changequote (argc=3, argv=0x33c70) at builtin.c:879 879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
Now we use the command n
(next
) to advance execution to
the next line of the current function.
({No value for `GDBP'}) n 882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\ : nil,
set_quotes
looks like a promising subroutine. We can go into it
by using the command s
(step
) instead of next
.
step
goes to the next line to be executed in any
subroutine, so it steps into set_quotes
.
({No value for `GDBP'}) s set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>") at input.c:530 530 if (lquote != def_lquote)
The display that shows the subroutine where m4
is now
suspended (and its arguments) is called a stack frame display. It
shows a summary of the stack. We can use the backtrace
command (which can also be spelled bt
), to see where we are
in the stack as a whole: the backtrace
command displays a
stack frame for each active subroutine.
({No value for `GDBP'}) bt #0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>") at input.c:530 #1 0x6344 in m4_changequote (argc=3, argv=0x33c70) at builtin.c:882 #2 0x8174 in expand_macro (sym=0x33320) at macro.c:242 #3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30) at macro.c:71 #4 0x79dc in expand_input () at macro.c:40 #5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
We step through a few more lines to see what happens. The first two
times, we can use ‘s’; the next two times we use n
to avoid
falling into the xstrdup
subroutine.
({No value for `GDBP'}) s 0x3b5c 532 if (rquote != def_rquote) ({No value for `GDBP'}) s 0x3b80 535 lquote = (lq == nil || *lq == '\0') ? \ def_lquote : xstrdup(lq); ({No value for `GDBP'}) n 536 rquote = (rq == nil || *rq == '\0') ? def_rquote\ : xstrdup(rq); ({No value for `GDBP'}) n 538 len_lquote = strlen(rquote);
The last line displayed looks a little odd; we can examine the variables
lquote
and rquote
to see if they are in fact the new left
and right quotes we specified. We use the command p
(print
) to see their values.
({No value for `GDBP'}) p lquote $1 = 0x35d40 "<QUOTE>" ({No value for `GDBP'}) p rquote $2 = 0x35d50 "<UNQUOTE>"
lquote
and rquote
are indeed the new left and right quotes.
To look at some context, we can display ten lines of source
surrounding the current line with the l
(list
) command.
({No value for `GDBP'}) l 533 xfree(rquote); 534 535 lquote = (lq == nil || *lq == '\0') ? def_lquote\ : xstrdup (lq); 536 rquote = (rq == nil || *rq == '\0') ? def_rquote\ : xstrdup (rq); 537 538 len_lquote = strlen(rquote); 539 len_rquote = strlen(lquote); 540 } 541 542 void
Let us step past the two lines that set len_lquote
and
len_rquote
, and then examine the values of those variables.
({No value for `GDBP'}) n 539 len_rquote = strlen(lquote); ({No value for `GDBP'}) n 540 } ({No value for `GDBP'}) p len_lquote $3 = 9 ({No value for `GDBP'}) p len_rquote $4 = 7
That certainly looks wrong, assuming len_lquote
and
len_rquote
are meant to be the lengths of lquote
and
rquote
respectively. We can set them to better values using
the p
command, since it can print the value of
any expression—and that expression can include subroutine calls and
assignments.
({No value for `GDBP'}) p len_lquote=strlen(lquote) $5 = 7 ({No value for `GDBP'}) p len_rquote=strlen(rquote) $6 = 9
Is that enough to fix the problem of using the new quotes with the
m4
built-in defn
? We can allow m4
to continue
executing with the c
(continue
) command, and then try the
example that caused trouble initially:
({No value for `GDBP'}) c Continuing. define(baz,defn(<QUOTE>foo<UNQUOTE>)) baz 0000
Success! The new quotes now work just as well as the default ones. The
problem seems to have been just the two typos defining the wrong
lengths. We allow m4
exit by giving it an EOF as input:
C-d Program exited normally.
The message ‘Program exited normally.’ is from {No value for ‘GDBN’}; it
indicates m4
has finished executing. We can end our {No value for ‘GDBN’}
session with the {No value for ‘GDBN’} quit
command.
({No value for `GDBP'}) quit
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This chapter discusses how to start {No value for ‘GDBN’}, and how to get out of it. (The essentials: type ‘{No value for `GDBP'}’ to start GDB, and type quit or C-d to exit.)
2.1 Invoking {No value for ‘GDBN’} | How to start {No value for ‘GDBN’} | |
2.2 Quitting {No value for ‘GDBN’} | How to quit {No value for ‘GDBN’} | |
2.3 Shell commands | How to use shell commands inside {No value for ‘GDBN’} |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Invoke {No value for ‘GDBN’} by running the program {No value for `GDBP'}
. Once started,
{No value for ‘GDBN’} reads commands from the terminal until you tell it to exit.
You can also run {No value for `GDBP'}
with a variety of arguments and options,
to specify more of your debugging environment at the outset.
The most usual way to start {No value for ‘GDBN’} is with one argument, specifying an executable program:
{No value for `GDBP'} program
You can also start with both an executable program and a core file specified:
{No value for `GDBP'} program core
You can, instead, specify a process ID as a second argument, if you want to debug a running process:
{No value for `GDBP'} program 1234
would attach {No value for ‘GDBN’} to process 1234
(unless you also have a file
named ‘1234’; {No value for ‘GDBN’} does check for a core file first).
Taking advantage of the second command-line argument requires a fairly complete operating system; when you use {No value for ‘GDBN’} as a remote debugger attached to a bare board, there may not be any notion of “process”, and there is often no way to get a core dump.
You can further control how {No value for ‘GDBN’} starts up by using command-line options. {No value for ‘GDBN’} itself can remind you of the options available.
Type
{No value for `GDBP'} -help
to display all available options and briefly describe their use (‘{No value for `GDBP'} -h’ is a shorter equivalent).
All options and command line arguments you give are processed in sequential order. The order makes a difference when the ‘-x’ option is used.
2.1.1 Choosing files | ||
2.1.2 Choosing modes |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When {No value for ‘GDBN’} starts, it reads any arguments other than options as specifying an executable file and core file (or process ID). This is the same as if the arguments were specified by the ‘-se’ and ‘-c’ options respectively. ({No value for ‘GDBN’} reads the first argument that does not have an associated option flag as equivalent to the ‘-se’ option followed by that argument; and the second argument that does not have an associated option flag, if any, as equivalent to the ‘-c’ option followed by that argument.)
Many options have both long and short forms; both are shown in the following list. {No value for ‘GDBN’} also recognizes the long forms if you truncate them, so long as enough of the option is present to be unambiguous. (If you prefer, you can flag option arguments with ‘--’ rather than ‘-’, though we illustrate the more usual convention.)
-symbols file
-s file
Read symbol table from file file.
-exec file
-e file
Use file file as the executable file to execute when appropriate, and for examining pure data in conjunction with a core dump.
-se file
Read symbol table from file file and use it as the executable file.
-core file
-c file
Use file file as a core dump to examine.
-c number
Connect to process ID number, as with the attach
command
(unless there is a file in core-dump format named number, in which
case ‘-c’ specifies that file as a core dump to read).
-command file
-x file
Execute {No value for ‘GDBN’} commands from file file. See section Command files.
-directory directory
-d directory
Add directory to the path to search for source files.
-m
-mapped
Warning: this option depends on operating system facilities that are not
supported on all systems.
If memory-mapped files are available on your system through the mmap
system call, you can use this option
to have {No value for ‘GDBN’} write the symbols from your
program into a reusable file in the current directory. If the program you are debugging is
called ‘/tmp/fred’, the mapped symbol file is ‘./fred.syms’.
Future {No value for ‘GDBN’} debugging sessions notice the presence of this file,
and can quickly map in symbol information from it, rather than reading
the symbol table from the executable program.
The ‘.syms’ file is specific to the host machine where {No value for ‘GDBN’} is run. It holds an exact image of the internal {No value for ‘GDBN’} symbol table. It cannot be shared across multiple host platforms.
-r
-readnow
Read each symbol file’s entire symbol table immediately, rather than the default, which is to read it incrementally as it is needed. This makes startup slower, but makes future operations faster.
The -mapped
and -readnow
options are typically combined in
order to build a ‘.syms’ file that contains complete symbol
information. (See section Commands to specify files, for information
on ‘.syms’ files.) A simple GDB invocation to do nothing but build
a ‘.syms’ file for future use is:
gdb -batch -nx -mapped -readnow programname
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can run {No value for ‘GDBN’} in various alternative modes—for example, in batch mode or quiet mode.
-nx
-n
Do not execute commands from any initialization files (normally called ‘{No value for `GDBINIT'}’). Normally, the commands in these files are executed after all the command options and arguments have been processed. See section Command files.
-quiet
-q
“Quiet”. Do not print the introductory and copyright messages. These messages are also suppressed in batch mode.
-batch
Run in batch mode. Exit with status 0
after processing all the
command files specified with ‘-x’ (and all commands from
initialization files, if not inhibited with ‘-n’). Exit with
nonzero status if an error occurs in executing the {No value for ‘GDBN’} commands
in the command files.
Batch mode may be useful for running {No value for ‘GDBN’} as a filter, for example to download and run a program on another computer; in order to make this more useful, the message
Program exited normally.
(which is ordinarily issued whenever a program running under {No value for ‘GDBN’} control terminates) is not issued when running in batch mode.
-cd directory
Run {No value for ‘GDBN’} using directory as its working directory, instead of the current directory.
-fullname
-f
Emacs sets this option when it runs {No value for ‘GDBN’} as a subprocess. It tells {No value for ‘GDBN’} to output the full file name and line number in a standard, recognizable fashion each time a stack frame is displayed (which includes each time your program stops). This recognizable format looks like two ‘\032’ characters, followed by the file name, line number and character position separated by colons, and a newline. The Emacs-to-{No value for ‘GDBN’} interface program uses the two ‘\032’ characters as a signal to display the source code for the frame.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
quit
To exit {No value for ‘GDBN’}, use the quit
command (abbreviated q
), or type
an end-of-file character (usually C-d).
An interrupt (often C-c) does not exit from {No value for ‘GDBN’}, but rather terminates the action of any {No value for ‘GDBN’} command that is in progress and returns to {No value for ‘GDBN’} command level. It is safe to type the interrupt character at any time because {No value for ‘GDBN’} does not allow it to take effect until a time when it is safe.
If you have been using {No value for ‘GDBN’} to control an attached process or
device, you can release it with the detach
command
(see section Debugging an already-running process).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you need to execute occasional shell commands during your
debugging session, there is no need to leave or suspend {No value for ‘GDBN’}; you can
just use the shell
command.
shell command string
Invoke a the standard shell to execute command string.
If it exists, the environment variable SHELL
determines which
shell to run. Otherwise {No value for ‘GDBN’} uses /bin/sh
.
The utility make
is often needed in development environments.
You do not have to use the shell
command for this purpose in
{No value for ‘GDBN’}:
make make-args
Execute the make
program with the specified
arguments. This is equivalent to ‘shell make make-args’.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can abbreviate a {No value for ‘GDBN’} command to the first few letters of the command name, if that abbreviation is unambiguous; and you can repeat certain {No value for ‘GDBN’} commands by typing just <RET>. You can also use the <TAB> key to get {No value for ‘GDBN’} to fill out the rest of a word in a command (or to show you the alternatives available, if there is more than one possibility).
3.1 Command syntax | How to give commands to {No value for ‘GDBN’} | |
3.2 Command completion | ||
3.3 Getting help | How to ask {No value for ‘GDBN’} for help |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A {No value for ‘GDBN’} command is a single line of input. There is no limit on
how long it can be. It starts with a command name, which is followed by
arguments whose meaning depends on the command name. For example, the
command step
accepts an argument which is the number of times to
step, as in ‘step 5’. You can also use the step
command
with no arguments. Some command names do not allow any arguments.
{No value for ‘GDBN’} command names may always be truncated if that abbreviation is
unambiguous. Other possible command abbreviations are listed in the
documentation for individual commands. In some cases, even ambiguous
abbreviations are allowed; for example, s
is specially defined as
equivalent to step
even though there are other commands whose
names start with s
. You can test abbreviations by using them as
arguments to the help
command.
A blank line as input to {No value for ‘GDBN’} (typing just <RET>) means to
repeat the previous command. Certain commands (for example, run
)
will not repeat this way; these are commands whose unintentional
repetition might cause trouble and which you are unlikely to want to
repeat.
The list
and x
commands, when you repeat them with
<RET>, construct new arguments rather than repeating
exactly as typed. This permits easy scanning of source or memory.
{No value for ‘GDBN’} can also use <RET> in another way: to partition lengthy
output, in a way similar to the common utility more
(see section Screen size). Since it is easy to press one
<RET> too many in this situation, {No value for ‘GDBN’} disables command
repetition after any command that generates this sort of display.
Any text from a # to the end of the line is a comment; it does nothing. This is useful mainly in command files (see section Command files).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} can fill in the rest of a word in a command for you, if there is only one possibility; it can also show you what the valid possibilities are for the next word in a command, at any time. This works for {No value for ‘GDBN’} commands, {No value for ‘GDBN’} subcommands, and the names of symbols in your program.
Press the <TAB> key whenever you want {No value for ‘GDBN’} to fill out the rest of a word. If there is only one possibility, {No value for ‘GDBN’} fills in the word, and waits for you to finish the command (or press <RET> to enter it). For example, if you type
({No value for `GDBP'}) info bre <TAB>
{No value for ‘GDBN’} fills in the rest of the word ‘breakpoints’, since that is
the only info
subcommand beginning with ‘bre’:
({No value for `GDBP'}) info breakpoints
You can either press <RET> at this point, to run the info
breakpoints
command, or backspace and enter something else, if
‘breakpoints’ does not look like the command you expected. (If you
were sure you wanted info breakpoints
in the first place, you
might as well just type <RET> immediately after ‘info bre’,
to exploit command abbreviations rather than command completion).
If there is more than one possibility for the next word when you press <TAB>, {No value for ‘GDBN’} sounds a bell. You can either supply more characters and try again, or just press <TAB> a second time; {No value for ‘GDBN’} displays all the possible completions for that word. For example, you might want to set a breakpoint on a subroutine whose name begins with ‘make_’, but when you type b make_<TAB> {No value for ‘GDBN’} just sounds the bell. Typing <TAB> again displays all the function names in your program that begin with those characters, for example:
({No value for `GDBP'}) b make_ <TAB> {No value for `GDBN'} sounds bell; press <TAB> again, to see: make_a_section_from_file make_environ make_abs_section make_function_type make_blockvector make_pointer_type make_cleanup make_reference_type make_command make_symbol_completion_list ({No value for `GDBP'}) b make_
After displaying the available possibilities, {No value for ‘GDBN’} copies your partial input (‘b make_’ in the example) so you can finish the command.
If you just want to see the list of alternatives in the first place, you can press M-? rather than pressing <TAB> twice. M-? means <META> ?. You can type this either by holding down a key designated as the <META> shift on your keyboard (if there is one) while typing ?, or as <ESC> followed by ?.
Sometimes the string you need, while logically a “word”, may contain
parentheses or other characters that {No value for ‘GDBN’} normally excludes from its
notion of a word. To permit word completion to work in this situation,
you may enclose words in '
(single quote marks) in {No value for ‘GDBN’} commands.
The most likely situation where you might need this is in typing the
name of a C++ function. This is because C++ allows function overloading
(multiple definitions of the same function, distinguished by argument
type). For example, when you want to set a breakpoint you may need to
distinguish whether you mean the version of name
that takes an
int
parameter, name(int)
, or the version that takes a
float
parameter, name(float)
. To use the word-completion
facilities in this situation, type a single quote '
at the
beginning of the function name. This alerts {No value for ‘GDBN’} that it may need to
consider more information than usual when you press <TAB> or
M-? to request word completion:
({No value for `GDBP'}) b 'bubble( <M-?> bubble(double,double) bubble(int,int) ({No value for `GDBP'}) b 'bubble(
In some cases, {No value for ‘GDBN’} can tell that completing a name requires using quotes. When this happens, {No value for ‘GDBN’} inserts the quote for you (while completing as much as it can) if you do not type the quote in the first place:
({No value for `GDBP'}) b bub <TAB> {No value for `GDBN'} alters your input line to the following, and rings a bell: ({No value for `GDBP'}) b 'bubble(
In general, {No value for ‘GDBN’} can tell that a quote is needed (and inserts it) if you have not yet started typing the argument list when you ask for completion on an overloaded symbol.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can always ask {No value for ‘GDBN’} itself for information on its commands, using the
command help
.
help
h
You can use help
(abbreviated h
) with no arguments to
display a short list of named classes of commands:
({No value for `GDBP'}) help List of classes of commands: running -- Running the program stack -- Examining the stack data -- Examining data breakpoints -- Making program stop at certain points files -- Specifying and examining files status -- Status inquiries support -- Support facilities user-defined -- User-defined commands aliases -- Aliases of other commands obscure -- Obscure features Type "help" followed by a class name for a list of commands in that class. Type "help" followed by command name for full documentation. Command name abbreviations are allowed if unambiguous. ({No value for `GDBP'})
help class
Using one of the general help classes as an argument, you can get a
list of the individual commands in that class. For example, here is the
help display for the class status
:
({No value for `GDBP'}) help status Status inquiries. List of commands: show -- Generic command for showing things set with "set" info -- Generic command for printing status Type "help" followed by command name for full documentation. Command name abbreviations are allowed if unambiguous. ({No value for `GDBP'})
help command
With a command name as help
argument, {No value for ‘GDBN’} displays a
short paragraph on how to use that command.
In addition to help
, you can use the {No value for ‘GDBN’} commands info
and show
to inquire about the state of your program, or the state
of {No value for ‘GDBN’} itself. Each command supports many topics of inquiry; this
manual introduces each of them in the appropriate context. The listings
under info
and under show
in the Index point to
all the sub-commands. See section Index.
info
This command (abbreviated i
) is for describing the state of your
program. For example, you can list the arguments given to your program
with info args
, list the registers currently in use with info
registers
, or list the breakpoints you have set with info breakpoints
.
You can get a complete list of the info
sub-commands with
help info
.
show
In contrast, show
is for describing the state of {No value for ‘GDBN’} itself.
You can change most of the things you can show
, by using the
related command set
; for example, you can control what number
system is used for displays with set radix
, or simply inquire
which is currently in use with show radix
.
To display all the settable parameters and their current
values, you can use show
with no arguments; you may also use
info set
. Both commands produce the same display.
Here are three miscellaneous show
subcommands, all of which are
exceptional in lacking corresponding set
commands:
show version
Show what version of {No value for ‘GDBN’} is running. You should include this information in {No value for ‘GDBN’} bug-reports. If multiple versions of {No value for ‘GDBN’} are in use at your site, you may occasionally want to determine which version of {No value for ‘GDBN’} you are running; as {No value for ‘GDBN’} evolves, new commands are introduced, and old ones may wither away. The version number is also announced when you start {No value for ‘GDBN’}.
show copying
Display information about permission for copying {No value for ‘GDBN’}.
show warranty
Display the GNU “NO WARRANTY” statement.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When you run a program under {No value for ‘GDBN’}, you must first generate debugging information when you compile it. You may start it with its arguments, if any, in an environment of your choice. You may redirect your program’s input and output, debug an already running process, or kill a child process.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
In order to debug a program effectively, you need to generate debugging information when you compile it. This debugging information is stored in the object file; it describes the data type of each variable or function and the correspondence between source line numbers and addresses in the executable code.
To request debugging information, specify the ‘-g’ option when you run the compiler.
Many C compilers are unable to handle the ‘-g’ and ‘-O’ options together. Using those compilers, you cannot generate optimized executables containing debugging information.
{No value for ‘NGCC’}, the GNU C compiler, supports ‘-g’ with or without ‘-O’, making it possible to debug optimized code. We recommend that you always use ‘-g’ whenever you compile a program. You may think your program is correct, but there is no sense in pushing your luck.
When you debug a program compiled with ‘-g -O’, remember that the optimizer is rearranging your code; the debugger shows you what is really there. Do not be too surprised when the execution path does not exactly match your source file! An extreme example: if you define a variable, but never use it, {No value for ‘GDBN’} never sees that variable—because the compiler optimizes it out of existence.
Some things do not work as well with ‘-g -O’ as with just ‘-g’, particularly on machines with instruction scheduling. If in doubt, recompile with ‘-g’ alone, and if this fixes the problem, please report it as a bug (including a test case!).
Older versions of the GNU C compiler permitted a variant option ‘-gg’ for debugging information. {No value for ‘GDBN’} no longer supports this format; if your GNU C compiler has this option, do not use it.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
run
r
Use the run
command to start your program under {No value for ‘GDBN’}. You must
first specify the program name
with an argument to {No value for ‘GDBN’} (see section Getting In and Out of {No value for ‘GDBN’}), or by using the file
or exec-file
command (see section Commands to specify files).
If you are running your program in an execution environment that
supports processes, run
creates an inferior process and makes
that process run your program. (In environments without processes,
run
jumps to the start of your program.)
The execution of a program is affected by certain information it receives from its superior. {No value for ‘GDBN’} provides ways to specify this information, which you must do before starting your program. (You can change it after starting your program, but such changes only affect your program the next time you start it.) This information may be divided into four categories:
Specify the arguments to give your program as the arguments of the
run
command. If a shell is available on your target, the shell
is used to pass the arguments, so that you may use normal conventions
(such as wildcard expansion or variable substitution) in describing
the arguments. In Unix systems, you can control which shell is used
with the SHELL
environment variable. See section Your program’s arguments.
Your program normally inherits its environment from {No value for ‘GDBN’}, but you can
use the {No value for ‘GDBN’} commands set environment
and unset
environment
to change parts of the environment that affect
your program. See section Your program’s environment.
Your program inherits its working directory from {No value for ‘GDBN’}. You can set
the {No value for ‘GDBN’} working directory with the cd
command in {No value for ‘GDBN’}.
See section Your program’s working directory.
Your program normally uses the same device for standard input and
standard output as {No value for ‘GDBN’} is using. You can redirect input and output
in the run
command line, or you can use the tty
command to
set a different device for your program.
See section Your program’s input and output.
Warning: While input and output redirection work, you cannot use pipes to pass the output of the program you are debugging to another program; if you attempt this, {No value for ‘GDBN’} is likely to wind up debugging the wrong program.
When you issue the run
command, your program begins to execute
immediately. See section Stopping and continuing, for discussion
of how to arrange for your program to stop. Once your program has
stopped, you may call functions in your program, using the print
or call
commands. See section Examining Data.
If the modification time of your symbol file has changed since the last time {No value for ‘GDBN’} read its symbols, {No value for ‘GDBN’} discards its symbol table, and reads it again. When it does this, {No value for ‘GDBN’} tries to retain your current breakpoints.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The arguments to your program can be specified by the arguments of the
run
command. They are passed to a shell, which expands wildcard
characters and performs redirection of I/O, and thence to your program.
Your SHELL
environment variable (if it exists) specifies what
shell {No value for ‘GDBN’} if you do not define SHELL
, {No value for ‘GDBN’} uses
/bin/sh
.
run
with no arguments uses the same arguments used by the previous
run
, or those set by the set args
command.
set args
Specify the arguments to be used the next time your program is run. If
set args
has no arguments, run
executes your program
with no arguments. Once you have run your program with arguments,
using set args
before the next run
is the only way to run
it again without arguments.
show args
Show the arguments to give your program when it is started.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The environment consists of a set of environment variables and their values. Environment variables conventionally record such things as your user name, your home directory, your terminal type, and your search path for programs to run. Usually you set up environment variables with the shell and they are inherited by all the other programs you run. When debugging, it can be useful to try running your program with a modified environment without having to start {No value for ‘GDBN’} over again.
path directory
Add directory to the front of the PATH
environment variable
(the search path for executables), for both {No value for ‘GDBN’} and your program.
You may specify several directory names, separated by ‘:’ or
whitespace. If directory is already in the path, it is moved to
the front, so it is searched sooner.
You can use the string ‘$cwd’ to refer to whatever is the current
working directory at the time {No value for ‘GDBN’} searches the path. If you
use ‘.’ instead, it refers to the directory where you executed the
path
command. {No value for ‘GDBN’} replaces ‘.’ in the
directory argument (with the current path) before adding
directory to the search path.
show paths
Display the list of search paths for executables (the PATH
environment variable).
show environment [varname]
Print the value of environment variable varname to be given to
your program when it starts. If you do not supply varname,
print the names and values of all environment variables to be given to
your program. You can abbreviate environment
as env
.
set environment varname [=] value
Set environment variable varname to value. The value changes for your program only, not for {No value for ‘GDBN’} itself. value may be any string; the values of environment variables are just strings, and any interpretation is supplied by your program itself. The value parameter is optional; if it is eliminated, the variable is set to a null value.
For example, this command:
set env USER = foo
tells a Unix program, when subsequently run, that its user is named ‘foo’. (The spaces around ‘=’ are used for clarity here; they are not actually required.)
unset environment varname
Remove variable varname from the environment to be passed to your
program. This is different from ‘set env varname =’;
unset environment
removes the variable from the environment,
rather than assigning it an empty value.
Warning: {No value for ‘GDBN’} runs your program using the shell indicated
by your SHELL
environment variable if it exists (or
/bin/sh
if not). If your SHELL
variable names a shell
that runs an initialization file—such as ‘.cshrc’ for C-shell, or
‘.bashrc’ for BASH—any variables you set in that file affect
your program. You may wish to move setting of environment variables to
files that are only run when you sign on, such as ‘.login’ or
‘.profile’.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Each time you start your program with run
, it inherits its
working directory from the current working directory of {No value for ‘GDBN’}.
The {No value for ‘GDBN’} working directory is initially whatever it inherited
from its parent process (typically the shell), but you can specify a new
working directory in {No value for ‘GDBN’} with the cd
command.
The {No value for ‘GDBN’} working directory also serves as a default for the commands that specify files for {No value for ‘GDBN’} to operate on. See section Commands to specify files.
cd directory
Set the {No value for ‘GDBN’} working directory to directory.
pwd
Print the {No value for ‘GDBN’} working directory.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
By default, the program you run under {No value for ‘GDBN’} does input and output to the same terminal that {No value for ‘GDBN’} uses. {No value for ‘GDBN’} switches the terminal to its own terminal modes to interact with you, but it records the terminal modes your program was using and switches back to them when you continue running your program.
info terminal
Displays information recorded by {No value for ‘GDBN’} about the terminal modes your program is using.
You can redirect your program’s input and/or output using shell
redirection with the run
command. For example,
run > outfile
starts your program, diverting its output to the file ‘outfile’.
Another way to specify where your program should do input and output is
with the tty
command. This command accepts a file name as
argument, and causes this file to be the default for future run
commands. It also resets the controlling terminal for the child
process, for future run
commands. For example,
tty /dev/ttyb
directs that processes started with subsequent run
commands
default to do input and output on the terminal ‘/dev/ttyb’ and have
that as their controlling terminal.
An explicit redirection in run
overrides the tty
command’s
effect on the input/output device, but not its effect on the controlling
terminal.
When you use the tty
command or redirect input in the run
command, only the input for your program is affected. The input
for {No value for ‘GDBN’} still comes from your terminal.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
attach process-id
This command attaches to a running process—one that was started
outside {No value for ‘GDBN’}. (info files
shows your active
targets.) The command takes as argument a process ID. The usual way to
find out the process-id of a Unix process is with the ps
utility,
or with the ‘jobs -l’ shell command.
attach
does not repeat if you press <RET> a second time after
executing the command.
To use attach
, your program must be running in an environment
which supports processes; for example, attach
does not work for
programs on bare-board targets that lack an operating system. You must
also have permission to send the process a signal.
When using attach
, you should first use the file
command
to specify the program running in the process and load its symbol table.
See section Commands to Specify Files.
The first thing {No value for ‘GDBN’} does after arranging to debug the specified
process is to stop it. You can examine and modify an attached process
with all the {No value for ‘GDBN’} commands that are ordinarily available when you start
processes with run
. You can insert breakpoints; you can step and
continue; you can modify storage. If you would rather the process
continue running, you may use the continue
command after
attaching {No value for ‘GDBN’} to the process.
detach
When you have finished debugging the attached process, you can use the
detach
command to release it from {No value for ‘GDBN’} control. Detaching
the process continues its execution. After the detach
command,
that process and {No value for ‘GDBN’} become completely independent once more, and you
are ready to attach
another process or start one with run
.
detach
does not repeat if you press <RET> again after
executing the command.
If you exit {No value for ‘GDBN’} or use the run
command while you have an
attached process, you kill that process. By default, {No value for ‘GDBN’} asks
for confirmation if you try to do either of these things; you can
control whether or not you need to confirm by using the set
confirm
command (see section Optional warnings and messages).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
kill
Kill the child process in which your program is running under {No value for ‘GDBN’}.
This command is useful if you wish to debug a core dump instead of a running process. {No value for ‘GDBN’} ignores any core dump file while your program is running.
On some operating systems, a program cannot be executed outside {No value for ‘GDBN’}
while you have breakpoints set on it inside {No value for ‘GDBN’}. You can use the
kill
command in this situation to permit running your program
outside the debugger.
The kill
command is also useful if you wish to recompile and
relink your program, since on many systems it is impossible to modify an
executable file while it is running in a process. In this case, when you
next type run
, {No value for ‘GDBN’} notices that the file has changed, and
reads the symbol table again (while trying to preserve your current
breakpoint settings).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Some operating systems provide a facility called ‘/proc’ that can
be used to examine the image of a running process using file-system
subroutines. If {No value for ‘GDBN’} is configured for an operating system with this
facility, the command info proc
is available to report on several
kinds of information about the process running your program.
info proc
Summarize available information about the process.
info proc mappings
Report on the address ranges accessible in the program, with information on whether your program may read, write, or execute each range.
info proc times
Starting time, user CPU time, and system CPU time for your program and its children.
info proc id
Report on the process IDs related to your program: its own process ID, the ID of its parent, the process group ID, and the session ID.
info proc status
General information on the state of the process. If the process is stopped, this report includes the reason for stopping, and any signal received.
info proc all
Show all the above information about the process.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
In some operating systems, a single program may have more than one thread of execution. The precise semantics of threads differ from one operating system to another, but in general the threads of a single program are akin to multiple processes—except that they share one address space (that is, they can all examine and modify the same variables). On the other hand, each thread has its own registers and execution stack, and perhaps private memory.
{No value for ‘GDBN’} provides these facilities for debugging multi-thread programs:
Warning: These facilities are not yet available on every {No value for ‘GDBN’} configuration where the operating system supports threads. If your {No value for ‘GDBN’} does not support threads, these commands have no effect. For example, a system without thread support shows no output from ‘info threads’, and always rejects the
thread
command, like this:({No value for `GDBP'}) info threads ({No value for `GDBP'}) thread 1 Thread ID 1 not known. Use the "info threads" command to see the IDs of currently known threads.
The {No value for ‘GDBN’} thread debugging facility allows you to observe all threads while your program runs—but whenever {No value for ‘GDBN’} takes control, one thread in particular is always the focus of debugging. This thread is called the current thread. Debugging commands show program information from the perspective of the current thread.
Whenever {No value for ‘GDBN’} detects a new thread in your program, it displays the target system’s identification for the thread with a message in the form ‘[New systag]’. systag is a thread identifier whose form varies depending on the particular system. For example, on LynxOS, you might see
[New process 35 thread 27]
when {No value for ‘GDBN’} notices a new thread. In contrast, on an SGI system, the systag is simply something like ‘process 368’, with no further qualifier.
For debugging purposes, {No value for ‘GDBN’} associates its own thread number—always a single integer—with each thread in your program.
info threads
Display a summary of all threads currently in your program. {No value for ‘GDBN’} displays for each thread (in this order):
An asterisk ‘*’ to the left of the {No value for ‘GDBN’} thread number indicates the current thread.
For example,
({No value for `GDBP'}) info threads 3 process 35 thread 27 0x34e5 in sigpause () 2 process 35 thread 23 0x34e5 in sigpause () * 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8) at threadtest.c:68
thread threadno
Make thread number threadno the current thread. The command argument threadno is the internal {No value for ‘GDBN’} thread number, as shown in the first field of the ‘info threads’ display. {No value for ‘GDBN’} responds by displaying the system identifier of the thread you selected, and its current stack frame summary:
({No value for `GDBP'}) thread 2 [Switching to process 35 thread 23] 0x34e5 in sigpause ()
As with the ‘[New …]’ message, the form of the text after ‘Switching to’ depends on your system’s conventions for identifying threads.
Whenever {No value for ‘GDBN’} stops your program, due to a breakpoint or a signal, it automatically selects the thread where that breakpoint or signal happened. {No value for ‘GDBN’} alerts you to the context switch with a message of the form ‘[Switching to systag]’ to identify the thread.
See section Stopping and starting multi-thread programs, for more information about how {No value for ‘GDBN’} behaves when you stop and start programs with multiple threads.
See section Setting watchpoints, for information about watchpoints in programs with multiple threads.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The principal purposes of using a debugger are so that you can stop your program before it terminates; or so that, if your program runs into trouble, you can investigate and find out why.
Inside {No value for ‘GDBN’}, your program may stop for any of several reasons, such
as
a signal,
a breakpoint, or reaching a new line after a {No value for ‘GDBN’}
command such as step
. You may then examine and change
variables, set new breakpoints or remove old ones, and then continue
execution. Usually, the messages shown by {No value for ‘GDBN’} provide ample
explanation of the status of your program—but you can also explicitly
request this information at any time.
info program
Display information about the status of your program: whether it is running or not, what process it is, and why it stopped.
5.1 Breakpoints, watchpoints, and exceptions | ||
5.2 Continuing and stepping | Resuming execution | |
5.3 Stopping and starting multi-thread programs |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A breakpoint makes your program stop whenever a certain point in
the program is reached. For each breakpoint, you can add
conditions to control in finer detail whether your program stops.
You can set breakpoints with the break
command and its variants
(see section Setting breakpoints), to specify the place where
your program should stop by line number, function name or exact address
in the program.
In languages with exception handling (such as GNU C++), you can also set
breakpoints where an exception is raised (see section Breakpoints and exceptions).
A watchpoint is a special breakpoint that stops your program when the value of an expression changes. You must use a different command to set watchpoints (see section Setting watchpoints), but aside from that, you can manage a watchpoint like any other breakpoint: you enable, disable, and delete both breakpoints and watchpoints using the same commands.
You can arrange to have values from your program displayed automatically whenever {No value for ‘GDBN’} stops at a breakpoint. See section Automatic display.
{No value for ‘GDBN’} assigns a number to each breakpoint or watchpoint when you create it; these numbers are successive integers starting with one. In many of the commands for controlling various features of breakpoints you use the breakpoint number to say which breakpoint you want to change. Each breakpoint may be enabled or disabled; if disabled, it has no effect on your program until you enable it again.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Breakpoints are set with the break
command (abbreviated
b
). The debugger convenience variable ‘$bpnum’ records the
number of the beakpoint you’ve set most recently; see Convenience variables, for a discussion of what you can do with
convenience variables.
You have several ways to say where the breakpoint should go.
break function
Set a breakpoint at entry to function function. When using source languages that permit overloading of symbols, such as C++, function may refer to more than one possible place to break. See section Breakpoint menus, for a discussion of that situation.
break +offset
break -offset
Set a breakpoint some number of lines forward or back from the position at which execution stopped in the currently selected frame.
break linenum
Set a breakpoint at line linenum in the current source file. That file is the last file whose source text was printed. This breakpoint stops your program just before it executes any of the code on that line.
break filename:linenum
Set a breakpoint at line linenum in source file filename.
break filename:function
Set a breakpoint at entry to function function found in file filename. Specifying a file name as well as a function name is superfluous except when multiple files contain similarly named functions.
break *address
Set a breakpoint at address address. You can use this to set breakpoints in parts of your program which do not have debugging information or source files.
break
When called without any arguments, break
sets a breakpoint at
the next instruction to be executed in the selected stack frame
(see section Examining the Stack). In any selected frame but the
innermost, this makes your program stop as soon as control
returns to that frame. This is similar to the effect of a
finish
command in the frame inside the selected frame—except
that finish
does not leave an active breakpoint. If you use
break
without an argument in the innermost frame, {No value for ‘GDBN’} stops
the next time it reaches the current location; this may be useful
inside loops.
{No value for ‘GDBN’} normally ignores breakpoints when it resumes execution, until at least one instruction has been executed. If it did not do this, you would be unable to proceed past a breakpoint without first disabling the breakpoint. This rule applies whether or not the breakpoint already existed when your program stopped.
break … if cond
Set a breakpoint with condition cond; evaluate the expression cond each time the breakpoint is reached, and stop only if the value is nonzero—that is, if cond evaluates as true. ‘…’ stands for one of the possible arguments described above (or no argument) specifying where to break. See section Break conditions, for more information on breakpoint conditions.
tbreak args
Set a breakpoint enabled only for one stop. args are the
same as for the break
command, and the breakpoint is set in the same
way, but the breakpoint is automatically disabled after the first time your
program stops there. See section Disabling breakpoints.
rbreak regex
Set breakpoints on all functions matching the regular expression
regex. This command
sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set. Once these breakpoints are set, they are treated
just like the breakpoints set with the break
command. You can
delete them, disable them, or make them conditional the same way as any
other breakpoint.
When debugging C++ programs, rbreak
is useful for setting
breakpoints on overloaded functions that are not members of any special
classes.
info breakpoints [n]
info break [n]
info watchpoints [n]
Print a table of all breakpoints and watchpoints set and not deleted, with the following columns for each breakpoint:
Breakpoint or watchpoint.
Whether the breakpoint is marked to be disabled or deleted when hit.
Enabled breakpoints are marked with ‘y’. ‘n’ marks breakpoints that are not enabled.
Where the breakpoint is in your program, as a memory address
Where the breakpoint is in the source for your program, as a file and line number.
If a breakpoint is conditional, info break
shows the condition on
the line following the affected breakpoint; breakpoint commands, if any,
are listed after that.
info break
with a breakpoint
number n as argument lists only that breakpoint. The
convenience variable $_
and the default examining-address for
the x
command are set to the address of the last breakpoint
listed (see section Examining memory).
{No value for ‘GDBN’} allows you to set any number of breakpoints at the same place in your program. There is nothing silly or meaningless about this. When the breakpoints are conditional, this is even useful (see section Break conditions).
{No value for ‘GDBN’} itself sometimes sets breakpoints in your program for special
purposes, such as proper handling of longjmp
(in C programs).
These internal breakpoints are assigned negative numbers, starting with
-1
; ‘info breakpoints’ does not display them.
You can see these breakpoints with the {No value for ‘GDBN’} maintenance command ‘maint info breakpoints’.
maint info breakpoints
Using the same format as ‘info breakpoints’, display both the breakpoints you’ve set explicitly, and those {No value for ‘GDBN’} is using for internal purposes. Internal breakpoints are shown with negative breakpoint numbers. The type column identifies what kind of breakpoint is shown:
breakpoint
Normal, explicitly set breakpoint.
watchpoint
Normal, explicitly set watchpoint.
longjmp
Internal breakpoint, used to handle correctly stepping through
longjmp
calls.
longjmp resume
Internal breakpoint at the target of a longjmp
.
until
Temporary internal breakpoint used by the {No value for ‘GDBN’} until
command.
finish
Temporary internal breakpoint used by the {No value for ‘GDBN’} finish
command.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can use a watchpoint to stop execution whenever the value of an expression changes, without having to predict a particular place where this may happen.
Watchpoints currently execute two orders of magnitude more slowly than other breakpoints, but this can be well worth it to catch errors where you have no clue what part of your program is the culprit.
watch expr
Set a watchpoint for an expression.
info watchpoints
This command prints a list of watchpoints and breakpoints; it is the
same as info break
.
Warning: in multi-thread programs, watchpoints have only limited usefulness. With the current watchpoint implementation, {No value for ‘GDBN’} can only watch the value of an expression in a single thread. If you are confident that the expression can only change due to the current thread’s activity (and if you are also confident that no other thread can become current), then you can use watchpoints as usual. However, {No value for ‘GDBN’} may not notice when a non-current thread’s activity changes the expression.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Some languages, such as GNU C++, implement exception handling. You can use {No value for ‘GDBN’} to examine what caused your program to raise an exception, and to list the exceptions your program is prepared to handle at a given point in time.
catch exceptions
You can set breakpoints at active exception handlers by using the
catch
command. exceptions is a list of names of exceptions
to catch.
You can use info catch
to list active exception handlers.
See section Information about a frame.
There are currently some limitations to exception handling in {No value for ‘GDBN’}:
Sometimes catch
is not the best way to debug exception handling:
if you need to know exactly where an exception is raised, it is better to
stop before the exception handler is called, since that way you
can see the stack before any unwinding takes place. If you set a
breakpoint in an exception handler instead, it may not be easy to find
out where the exception was raised.
To stop just before an exception handler is called, you need some
knowledge of the implementation. In the case of GNU C++, exceptions are
raised by calling a library function named __raise_exception
which has the following ANSI C interface:
/* addr is where the exception identifier is stored. ID is the exception identifier. */ void __raise_exception (void **addr, void *id);
To make the debugger catch all exceptions before any stack
unwinding takes place, set a breakpoint on __raise_exception
(see section Breakpoints; watchpoints; and exceptions).
With a conditional breakpoint (see section Break conditions) that depends on the value of id, you can stop your program when a specific exception is raised. You can use multiple conditional breakpoints to stop your program when any of a number of exceptions are raised.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
It is often necessary to eliminate a breakpoint or watchpoint once it has done its job and you no longer want your program to stop there. This is called deleting the breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.
With the clear
command you can delete breakpoints according to
where they are in your program. With the delete
command you can
delete individual breakpoints or watchpoints by specifying their
breakpoint numbers.
It is not necessary to delete a breakpoint to proceed past it. {No value for ‘GDBN’} automatically ignores breakpoints on the first instruction to be executed when you continue execution without changing the execution address.
clear
Delete any breakpoints at the next instruction to be executed in the selected stack frame (see section Selecting a frame). When the innermost frame is selected, this is a good way to delete a breakpoint where your program just stopped.
clear function
clear filename:function
Delete any breakpoints set at entry to the function function.
clear linenum
clear filename:linenum
Delete any breakpoints set at or within the code of the specified line.
delete [breakpoints] [bnums…]
Delete the breakpoints or watchpoints of the numbers specified as
arguments. If no argument is specified, delete all breakpoints ({No value for ‘GDBN’}
asks confirmation, unless you have set confirm off
). You
can abbreviate this command as d
.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Rather than deleting a breakpoint or watchpoint, you might prefer to disable it. This makes the breakpoint inoperative as if it had been deleted, but remembers the information on the breakpoint so that you can enable it again later.
You disable and enable breakpoints and watchpoints with the
enable
and disable
commands, optionally specifying one or
more breakpoint numbers as arguments. Use info break
or
info watch
to print a list of breakpoints or watchpoints if you
do not know which numbers to use.
A breakpoint or watchpoint can have any of four different states of enablement:
break
command starts out in this state.
tbreak
command starts out in
this state.
You can use the following commands to enable or disable breakpoints and watchpoints:
disable [breakpoints] [bnums…]
Disable the specified breakpoints—or all breakpoints, if none are
listed. A disabled breakpoint has no effect but is not forgotten. All
options such as ignore-counts, conditions and commands are remembered in
case the breakpoint is enabled again later. You may abbreviate
disable
as dis
.
enable [breakpoints] [bnums…]
Enable the specified breakpoints (or all defined breakpoints). They become effective once again in stopping your program.
enable [breakpoints] once bnums…
Enable the specified breakpoints temporarily. {No value for ‘GDBN’} disables any of these breakpoints immediately after stopping your program.
enable [breakpoints] delete bnums…
Enable the specified breakpoints to work once, then die. {No value for ‘GDBN’} deletes any of these breakpoints as soon as your program stops there.
Save for a breakpoint set with tbreak
(see section Setting breakpoints), breakpoints that you set are initially enabled;
subsequently, they become disabled or enabled only when you use one of
the commands above. (The command until
can set and delete a
breakpoint of its own, but it does not change the state of your other
breakpoints; see Continuing and stepping.)
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The simplest sort of breakpoint breaks every time your program reaches a specified place. You can also specify a condition for a breakpoint. A condition is just a Boolean expression in your programming language (see section Expressions). A breakpoint with a condition evaluates the expression each time your program reaches it, and your program stops only if the condition is true.
This is the converse of using assertions for program validation; in that situation, you want to stop when the assertion is violated—that is, when the condition is false. In C, if you want to test an assertion expressed by the condition assert, you should set the condition ‘! assert’ on the appropriate breakpoint.
Conditions are also accepted for watchpoints; you may not need them, since a watchpoint is inspecting the value of an expression anyhow—but it might be simpler, say, to just set a watchpoint on a variable name, and specify a condition that tests whether the new value is an interesting one.
Break conditions can have side effects, and may even call functions in your program. This can be useful, for example, to activate functions that log program progress, or to use your own print functions to format special data structures. The effects are completely predictable unless there is another enabled breakpoint at the same address. (In that case, {No value for ‘GDBN’} might see the other breakpoint first and stop your program without checking the condition of this one.) Note that breakpoint commands are usually more convenient and flexible for the purpose of performing side effects when a breakpoint is reached (see section Breakpoint command lists).
Break conditions can be specified when a breakpoint is set, by using
‘if’ in the arguments to the break
command. See section Setting breakpoints. They can also be changed at any time
with the condition
command. The watch
command does not
recognize the if
keyword; condition
is the only way to
impose a further condition on a watchpoint.
condition bnum expression
Specify expression as the break condition for breakpoint or
watchpoint number bnum. After you set a condition, breakpoint
bnum stops your program only if the value of expression is
true (nonzero, in C). When you use condition
, {No value for ‘GDBN’}
checks expression immediately for syntactic correctness, and to
determine whether symbols in it have referents in the context of your
breakpoint.
{No value for ‘GDBN’} does
not actually evaluate expression at the time the condition
command is given, however. See section Expressions.
condition bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary unconditional breakpoint.
A special case of a breakpoint condition is to stop only when the breakpoint has been reached a certain number of times. This is so useful that there is a special way to do it, using the ignore count of the breakpoint. Every breakpoint has an ignore count, which is an integer. Most of the time, the ignore count is zero, and therefore has no effect. But if your program reaches a breakpoint whose ignore count is positive, then instead of stopping, it just decrements the ignore count by one and continues. As a result, if the ignore count value is n, the breakpoint does not stop the next n times your program reaches it.
ignore bnum count
Set the ignore count of breakpoint number bnum to count. The next count times the breakpoint is reached, your program’s execution does not stop; other than to decrement the ignore count, {No value for ‘GDBN’} takes no action.
To make the breakpoint stop the next time it is reached, specify a count of zero.
When you use continue
to resume execution of your program from a
breakpoint, you can specify an ignore count directly as an argument to
continue
, rather than using ignore
. See section Continuing and stepping.
If a breakpoint has a positive ignore count and a condition, the condition is not checked. Once the ignore count reaches zero, {No value for ‘GDBN’} resumes checking the condition.
You could achieve the effect of the ignore count with a condition such as ‘$foo-- <= 0’ using a debugger convenience variable that is decremented each time. See section Convenience variables.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can give any breakpoint (or watchpoint) a series of commands to execute when your program stops due to that breakpoint. For example, you might want to print the values of certain expressions, or enable other breakpoints.
commands [bnum]
… command-list …
end
Specify a list of commands for breakpoint number bnum. The commands
themselves appear on the following lines. Type a line containing just
end
to terminate the commands.
To remove all commands from a breakpoint, type commands
and
follow it immediately with end
; that is, give no commands.
With no bnum argument, commands
refers to the last
breakpoint or watchpoint set (not to the breakpoint most recently
encountered).
Pressing <RET> as a means of repeating the last {No value for ‘GDBN’} command is disabled within a command-list.
You can use breakpoint commands to start your program up again. Simply
use the continue
command, or step
, or any other command
that resumes execution.
Any other commands in the command list, after a command that resumes
execution, are ignored. This is because any time you resume execution
(even with a simple next
or step
), you may encounter
another breakpoint—which could have its own command list, leading to
ambiguities about which list to execute.
If the first command you specify in a command list is silent
, the
usual message about stopping at a breakpoint is not printed. This may
be desirable for breakpoints that are to print a specific message and
then continue. If none of the remaining commands print anything, you
see no sign that the breakpoint was reached. silent
is
meaningful only at the beginning of a breakpoint command list.
The commands echo
, output
, and printf
allow you to
print precisely controlled output, and are often useful in silent
breakpoints. See section Commands for controlled output.
For example, here is how you could use breakpoint commands to print the
value of x
at entry to foo
whenever x
is positive.
break foo if x>0 commands silent printf "x is %d\n",x cont end
One application for breakpoint commands is to compensate for one bug so
you can test for another. Put a breakpoint just after the erroneous line
of code, give it a condition to detect the case in which something
erroneous has been done, and give it commands to assign correct values
to any variables that need them. End with the continue
command
so that your program does not stop, and start with the silent
command so that no output is produced. Here is an example:
break 403 commands silent set x = y + 4 cont end
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Some programming languages (notably C++) permit a single function name
to be defined several times, for application in different contexts.
This is called overloading. When a function name is overloaded,
‘break function’ is not enough to tell {No value for ‘GDBN’} where you want
a breakpoint. If you realize this is a problem, you can use
something like ‘break function(types)’ to specify which
particular version of the function you want. Otherwise, {No value for ‘GDBN’} offers
you a menu of numbered choices for different possible breakpoints, and
waits for your selection with the prompt ‘>’. The first two
options are always ‘[0] cancel’ and ‘[1] all’. Typing 1
sets a breakpoint at each definition of function, and typing
0 aborts the break
command without setting any new
breakpoints.
For example, the following session excerpt shows an attempt to set a
breakpoint at the overloaded symbol String::after
.
We choose three particular definitions of that function name:
({No value for `GDBP'}) b String::after [0] cancel [1] all [2] file:String.cc; line number:867 [3] file:String.cc; line number:860 [4] file:String.cc; line number:875 [5] file:String.cc; line number:853 [6] file:String.cc; line number:846 [7] file:String.cc; line number:735 > 2 4 6 Breakpoint 1 at 0xb26c: file String.cc, line 867. Breakpoint 2 at 0xb344: file String.cc, line 875. Breakpoint 3 at 0xafcc: file String.cc, line 846. Multiple breakpoints were set. Use the "delete" command to delete unwanted breakpoints. ({No value for `GDBP'})
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Under some operating systems, breakpoints cannot be used in a program if any other process is running that program. In this situation, attempting to run or continue a program with a breakpoint causes {No value for ‘GDBN’} to stop the other process.
When this happens, you have three ways to proceed:
exec-file
command to specify that {No value for ‘GDBN’}
should run your program under that name. Then start your program again.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Continuing means resuming program execution until your program
completes normally. In contrast, stepping means executing just
one more “step” of your program, where “step” may mean either one
line of source code, or one machine instruction (depending on what
particular command you use). Either when continuing
or when stepping, your program may stop even sooner, due to
a breakpoint or a signal. (If due to a signal, you may want to use
handle
, or use ‘signal 0’ to resume execution.
@xref{Signals, ,Signals}.)
continue [ignore-count]
c [ignore-count]
fg [ignore-count]
Resume program execution, at the address where your program last stopped;
any breakpoints set at that address are bypassed. The optional argument
ignore-count allows you to specify a further number of times to
ignore a breakpoint at this location; its effect is like that of
ignore
(see section Break conditions).
The argument ignore-count is meaningful only when your program
stopped due to a breakpoint. At other times, the argument to
continue
is ignored.
The synonyms c
and fg
are provided purely for convenience,
and have exactly the same behavior as continue
.
To resume execution at a different place, you can use return
(see section Returning from a function) to go back to the
calling function; or jump
(see section Continuing at a different address) to go to an arbitrary location in your program.
A typical technique for using stepping is to set a breakpoint (see section Breakpoints; watchpoints; and exceptions) at the beginning of the function or the section of your program where a problem is believed to lie, run your program until it stops at that breakpoint, and then step through the suspect area, examining the variables that are interesting, until you see the problem happen.
step
Continue running your program until control reaches a different source
line, then stop it and return control to {No value for ‘GDBN’}. This command is
abbreviated s
.
Warning: If you use the
step
command while control is within a function that was compiled without debugging information, execution proceeds until control reaches a function that does have debugging information.
step count
Continue running as in step
, but do so count times. If a
breakpoint is reached,
or a signal not related to stepping occurs before count steps,
stepping stops right away.
next [count]
Continue to the next source line in the current (innermost) stack frame.
Similar to step
, but any function calls appearing within the line
of code are executed without stopping. Execution stops when control
reaches a different line of code at the stack level which was executing
when the next
command was given. This command is abbreviated
n
.
An argument count is a repeat count, as for step
.
next
within a function that lacks debugging information acts like
step
, but any function calls appearing within the code of the
function are executed without stopping.
finish
Continue running until just after function in the selected stack frame returns. Print the returned value (if any).
Contrast this with the return
command (see section Returning from a function).
until
u
Continue running until a source line past the current line, in the
current stack frame, is reached. This command is used to avoid single
stepping through a loop more than once. It is like the next
command, except that when until
encounters a jump, it
automatically continues execution until the program counter is greater
than the address of the jump.
This means that when you reach the end of a loop after single stepping
though it, until
makes your program continue execution until it
exits the loop. In contrast, a next
command at the end of a loop
simply steps back to the beginning of the loop, which forces you to step
through the next iteration.
until
always stops your program if it attempts to exit the current
stack frame.
until
may produce somewhat counterintuitive results if the order
of machine code does not match the order of the source lines. For
example, in the following excerpt from a debugging session, the f
(frame
) command shows that execution is stopped at line
206
; yet when we use until
, we get to line 195
:
({No value for `GDBP'}) f #0 main (argc=4, argv=0xf7fffae8) at m4.c:206 206 expand_input(); ({No value for `GDBP'}) until 195 for ( ; argc > 0; NEXTARG) {
This happened because, for execution efficiency, the compiler had
generated code for the loop closure test at the end, rather than the
start, of the loop—even though the test in a C for
-loop is
written before the body of the loop. The until
command appeared
to step back to the beginning of the loop when it advanced to this
expression; however, it has not really gone to an earlier
statement—not in terms of the actual machine code.
until
with no argument works by means of single
instruction stepping, and hence is slower than until
with an
argument.
until location
u location
Continue running your program until either the specified location is
reached, or the current stack frame returns. location is any of
the forms of argument acceptable to break
(see section Setting breakpoints). This form of the command uses breakpoints,
and hence is quicker than until
without an argument.
stepi
si
Execute one machine instruction, then stop and return to the debugger.
It is often useful to do ‘display/i $pc’ when stepping by machine instructions. This makes {No value for ‘GDBN’} automatically display the next instruction to be executed, each time your program stops. See section Automatic display.
An argument is a repeat count, as in step
.
nexti
ni
Execute one machine instruction, but if it is a function call, proceed until the function returns.
An argument is a repeat count, as in next
.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When your program has multiple threads (see section Debugging programs with multiple threads), you can choose whether to set breakpoints on all threads, or on a particular thread.
break linespec thread threadno
break linespec thread threadno if …
Use the qualifier ‘thread threadno’ with a breakpoint command to specify that you only want {No value for ‘GDBN’} to stop the program when a particular thread reaches this breakpoint. threadno is one of the numeric thread identifiers assigned by {No value for ‘GDBN’}, shown in the first column of the ‘info threads’ display.
If you do not specify ‘thread threadno’ when you set a breakpoint, the breakpoint applies to all threads of your program.
You can use the thread
qualifier on conditional breakpoints as
well; in this case, place ‘thread threadno’ before the
breakpoint condition, like this:
(gdb) break frik.c:13 thread 28 if bartab > lim
Whenever your program stops under {No value for ‘GDBN’} for any reason, all threads of execution stop, not just the current thread. This allows you to examine the overall state of the program, including switching between threads, without worrying that things may change underfoot.
Conversely, whenever you restart the program, all threads start
executing. This is true even when single-stepping with commands
like step
or next
.
In particular, {No value for ‘GDBN’} cannot single-step all threads in lockstep. Since thread scheduling is up to your debugging target’s operating system (not controlled by {No value for ‘GDBN’}), other threads may execute more than one statement while the current thread completes a single step. Moreover, in general other threads stop in the middle of a statement, rather than at a clean statement boundary, when the program stops.
You might even find your program stopped in another thread after continuing or even single-stepping. This happens whenever some other thread runs into a breakpoint, a signal, or an exception before the first thread completes whatever you requested.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When your program has stopped, the first thing you need to know is where it stopped and how it got there.
Each time your program performs a function call, the information about where in your program the call was made from is saved in a block of data called a stack frame. The frame also contains the arguments of the call and the local variables of the function that was called. All the stack frames are allocated in a region of memory called the call stack.
When your program stops, the {No value for ‘GDBN’} commands for examining the stack allow you to see all of this information.
One of the stack frames is selected by {No value for ‘GDBN’} and many {No value for ‘GDBN’} commands refer implicitly to the selected frame. In particular, whenever you ask {No value for ‘GDBN’} for the value of a variable in your program, the value is found in the selected frame. There are special {No value for ‘GDBN’} commands to select whichever frame you are interested in.
When your program stops, {No value for ‘GDBN’} automatically selects the
currently executing frame and describes it briefly as the frame
command does (see section Information about a frame).
6.1 Stack frames | ||
6.2 Backtraces | ||
6.3 Selecting a frame | ||
6.4 Information about a frame | Information on a frame |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The call stack is divided up into contiguous pieces called stack frames, or frames for short; each frame is the data associated with one call to one function. The frame contains the arguments given to the function, the function’s local variables, and the address at which the function is executing.
When your program is started, the stack has only one frame, that of the
function main
. This is called the initial frame or the
outermost frame. Each time a function is called, a new frame is
made. Each time a function returns, the frame for that function invocation
is eliminated. If a function is recursive, there can be many frames for
the same function. The frame for the function in which execution is
actually occurring is called the innermost frame. This is the most
recently created of all the stack frames that still exist.
Inside your program, stack frames are identified by their addresses. A stack frame consists of many bytes, each of which has its own address; each kind of computer has a convention for choosing one of those bytes whose address serves as the address of the frame. Usually this address is kept in a register called the frame pointer register while execution is going on in that frame.
{No value for ‘GDBN’} assigns numbers to all existing stack frames, starting with zero for the innermost frame, one for the frame that called it, and so on upward. These numbers do not really exist in your program; they are assigned by {No value for ‘GDBN’} to give you a way of designating stack frames in {No value for ‘GDBN’} commands.
Some compilers provide a way to compile functions so that they operate
without stack frames. (For example, the {No value for `GCC'}
option
‘-fomit-frame-pointer’ generates functions without a frame.)
This is occasionally done with heavily used library functions to save
the frame setup time. {No value for ‘GDBN’} has limited facilities for dealing
with these function invocations. If the innermost function invocation
has no stack frame, {No value for ‘GDBN’} nevertheless regards it as though
it had a separate frame, which is numbered zero as usual, allowing
correct tracing of the function call chain. However, {No value for ‘GDBN’} has
no provision for frameless functions elsewhere in the stack.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A backtrace is a summary of how your program got where it is. It shows one line per frame, for many frames, starting with the currently executing frame (frame zero), followed by its caller (frame one), and on up the stack.
backtrace
bt
Print a backtrace of the entire stack: one line per frame for all frames in the stack.
You can stop the backtrace at any time by typing the system interrupt character, normally C-c.
backtrace n
bt n
Similar, but print only the innermost n frames.
backtrace -n
bt -n
Similar, but print only the outermost n frames.
The names where
and info stack
(abbreviated info s
)
are additional aliases for backtrace
.
Each line in the backtrace shows the frame number and the function name.
The program counter value is also shown—unless you use set
print address off
. The backtrace also shows the source file name and
line number, as well as the arguments to the function. The program
counter value is omitted if it is at the beginning of the code for that
line number.
Here is an example of a backtrace. It was made with the command ‘bt 3’, so it shows the innermost three frames.
#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8) at builtin.c:993 #1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242 #2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08) at macro.c:71 (More stack frames follow...)
The display for frame zero does not begin with a program counter
value, indicating that your program has stopped at the beginning of the
code for line 993
of builtin.c
.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Most commands for examining the stack and other data in your program work on whichever stack frame is selected at the moment. Here are the commands for selecting a stack frame; all of them finish by printing a brief description of the stack frame just selected.
frame n
f n
Select frame number n. Recall that frame zero is the innermost
(currently executing) frame, frame one is the frame that called the
innermost one, and so on. The highest-numbered frame is the one for
main
.
frame addr
f addr
Select the frame at address addr. This is useful mainly if the chaining of stack frames has been damaged by a bug, making it impossible for {No value for ‘GDBN’} to assign numbers properly to all frames. In addition, this can be useful when your program has multiple stacks and switches between them.
up n
Move n frames up the stack. For positive numbers n, this advances toward the outermost frame, to higher frame numbers, to frames that have existed longer. n defaults to one.
down n
Move n frames down the stack. For positive numbers n, this
advances toward the innermost frame, to lower frame numbers, to frames
that were created more recently. n defaults to one. You may
abbreviate down
as do
.
All of these commands end by printing two lines of output describing the frame. The first line shows the frame number, the function name, the arguments, and the source file and line number of execution in that frame. The second line shows the text of that source line.
For example:
({No value for `GDBP'}) up #1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc) at env.c:10 10 read_input_file (argv[i]);
After such a printout, the list
command with no arguments
prints ten lines centered on the point of execution in the frame.
See section Printing source lines.
up-silently n
down-silently n
These two commands are variants of up
and down
,
respectively; they differ in that they do their work silently, without
causing display of the new frame. They are intended primarily for use
in {No value for ‘GDBN’} command scripts, where the output might be unnecessary and
distracting.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
There are several other commands to print information about the selected stack frame.
frame
f
When used without any argument, this command does not change which
frame is selected, but prints a brief description of the currently
selected stack frame. It can be abbreviated f
. With an
argument, this command is used to select a stack frame.
See section Selecting a frame.
info frame
info f
This command prints a verbose description of the selected stack frame, including the address of the frame, the addresses of the next frame down (called by this frame) and the next frame up (caller of this frame), the language that the source code corresponding to this frame was written in, the address of the frame’s arguments, the program counter saved in it (the address of execution in the caller frame), and which registers were saved in the frame. The verbose description is useful when something has gone wrong that has made the stack format fail to fit the usual conventions.
info frame addr
info f addr
Print a verbose description of the frame at address addr, without selecting that frame. The selected frame remains unchanged by this command.
info args
Print the arguments of the selected frame, each on a separate line.
info locals
Print the local variables of the selected frame, each on a separate line. These are all variables (declared either static or automatic) accessible at the point of execution of the selected frame.
info catch
Print a list of all the exception handlers that are active in the
current stack frame at the current point of execution. To see other
exception handlers, visit the associated frame (using the up
,
down
, or frame
commands); then type info catch
.
See section Breakpoints and exceptions.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} can print parts of your program’s source, since the debugging information recorded in the program tells {No value for ‘GDBN’} what source files were used to build it. When your program stops, {No value for ‘GDBN’} spontaneously prints the line where it stopped. Likewise, when you select a stack frame (see section Selecting a frame), {No value for ‘GDBN’} prints the line where execution in that frame has stopped. You can print other portions of source files by explicit command.
If you use {No value for ‘GDBN’} through its GNU Emacs interface, you may prefer to use Emacs facilities to view source; see section Using {No value for ‘GDBN’} under GNU Emacs.
7.1 Printing source lines | ||
7.2 Searching source files | ||
7.3 Specifying source directories | ||
7.4 Source and machine code |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
To print lines from a source file, use the list
command
(abbreviated l
). There are several ways to specify what part
of the file you want to print.
Here are the forms of the list
command most commonly used:
list linenum
Print lines centered around line number linenum in the current source file.
list function
Print lines centered around the beginning of function function.
list
Print more lines. If the last lines printed were printed with a
list
command, this prints lines following the last lines
printed; however, if the last line printed was a solitary line printed
as part of displaying a stack frame (see section Examining the Stack), this prints lines centered around that line.
list -
Print lines just before the lines last printed.
By default, {No value for ‘GDBN’} prints ten source lines with any of these forms of
the list
command. You can change this using set listsize
:
set listsize count
Make the list
command display count source lines (unless
the list
argument explicitly specifies some other number).
show listsize
Display the number of lines that list
prints.
Repeating a list
command with <RET> discards the argument,
so it is equivalent to typing just list
. This is more useful
than listing the same lines again. An exception is made for an
argument of ‘-’; that argument is preserved in repetition so that
each repetition moves up in the source file.
In general, the list
command expects you to supply zero, one or two
linespecs. Linespecs specify source lines; there are several ways
of writing them but the effect is always to specify some source line.
Here is a complete description of the possible arguments for list
:
list linespec
Print lines centered around the line specified by linespec.
list first,last
Print lines from first to last. Both arguments are linespecs.
list ,last
Print lines ending with last.
list first,
Print lines starting with first.
list +
Print lines just after the lines last printed.
list -
Print lines just before the lines last printed.
list
As described in the preceding table.
Here are the ways of specifying a single source line—all the kinds of linespec.
number
Specifies line number of the current source file.
When a list
command has two linespecs, this refers to
the same source file as the first linespec.
+offset
Specifies the line offset lines after the last line printed.
When used as the second linespec in a list
command that has
two, this specifies the line offset lines down from the
first linespec.
-offset
Specifies the line offset lines before the last line printed.
filename:number
Specifies line number in the source file filename.
function
Specifies the line of the open-brace that begins the body of the function function.
filename:function
Specifies the line of the open-brace that begins the body of the function function in the file filename. You only need the file name with a function name to avoid ambiguity when there are identically named functions in different source files.
*address
Specifies the line containing the program address address. address may be any expression.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
There are two commands for searching through the current source file for a regular expression.
forward-search regexp
search regexp
The command ‘forward-search regexp’ checks each line,
starting with the one following the last line listed, for a match for
regexp. It lists the line that is found. You can use
synonym ‘search regexp’ or abbreviate the command name as
fo
.
reverse-search regexp
The command ‘reverse-search regexp’ checks each line, starting
with the one before the last line listed and going backward, for a match
for regexp. It lists the line that is found. You can abbreviate
this command as rev
.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Executable programs sometimes do not record the directories of the source files from which they were compiled, just the names. Even when they do, the directories could be moved between the compilation and your debugging session. {No value for ‘GDBN’} has a list of directories to search for source files; this is called the source path. Each time {No value for ‘GDBN’} wants a source file, it tries all the directories in the list, in the order they are present in the list, until it finds a file with the desired name. Note that the executable search path is not used for this purpose. Neither is the current working directory, unless it happens to be in the source path.
If {No value for ‘GDBN’} cannot find a source file in the source path, and the object program records a directory, {No value for ‘GDBN’} tries that directory too. If the source path is empty, and there is no record of the compilation directory, {No value for ‘GDBN’} looks in the current directory as a last resort.
Whenever you reset or rearrange the source path, {No value for ‘GDBN’} clears out any information it has cached about where source files are found and where each line is in the file.
When you start {No value for ‘GDBN’}, its source path is empty.
To add other directories, use the directory
command.
directory dirname …
Add directory dirname to the front of the source path. Several directory names may be given to this command, separated by ‘:’ or whitespace. You may specify a directory that is already in the source path; this moves it forward, so {No value for ‘GDBN’} searches it sooner.
You can use the string ‘$cdir’ to refer to the compilation directory (if one is recorded), and ‘$cwd’ to refer to the current working directory. ‘$cwd’ is not the same as ‘.’—the former tracks the current working directory as it changes during your {No value for ‘GDBN’} session, while the latter is immediately expanded to the current directory at the time you add an entry to the source path.
directory
Reset the source path to empty again. This requires confirmation.
show directories
Print the source path: show which directories it contains.
If your source path is cluttered with directories that are no longer of interest, {No value for ‘GDBN’} may sometimes cause confusion by finding the wrong versions of source. You can correct the situation as follows:
directory
with no argument to reset the source path to empty.
directory
with suitable arguments to reinstall the
directories you want in the source path. You can add all the
directories in one command.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can use the command info line
to map source lines to program
addresses (and vice versa), and the command disassemble
to display
a range of addresses as machine instructions.
info line linespec
Print the starting and ending addresses of the compiled code for
source line linespec. You can specify source lines in any of
the ways understood by the list
command (see section Printing source lines).
For example, we can use info line
to discover the location of
the object code for the first line of function
m4_changequote
:
({No value for `GDBP'}) info line m4_changecom Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
We can also inquire (using *addr
as the form for
linespec) what source line covers a particular address:
({No value for `GDBP'}) info line *0x63ff Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
After info line
, the default address for the x
command
is changed to the starting address of the line, so that ‘x/i’ is
sufficient to begin examining the machine code (see section Examining memory). Also, this address is saved as the value of the
convenience variable $_
(see section Convenience variables).
disassemble
This specialized command dumps a range of memory as machine instructions. The default memory range is the function surrounding the program counter of the selected frame. A single argument to this command is a program counter value; {No value for ‘GDBN’} dumps the function surrounding this value. Two arguments specify a range of addresses (first inclusive, second exclusive) to dump.
We can use disassemble
to inspect the object code
range shown in the last info line
example (the example
shows SPARC machine instructions):
({No value for `GDBP'}) disas 0x63e4 0x6404 Dump of assembler code from 0x63e4 to 0x6404: 0x63e4 <builtin_init+5340>: ble 0x63f8 <builtin_init+5360> 0x63e8 <builtin_init+5344>: sethi %hi(0x4c00), %o0 0x63ec <builtin_init+5348>: ld [%i1+4], %o0 0x63f0 <builtin_init+5352>: b 0x63fc <builtin_init+5364> 0x63f4 <builtin_init+5356>: ld [%o0+4], %o0 0x63f8 <builtin_init+5360>: or %o0, 0x1a4, %o0 0x63fc <builtin_init+5364>: call 0x9288 <path_search> 0x6400 <builtin_init+5368>: nop End of assembler dump.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The usual way to examine data in your program is with the print
command (abbreviated p
), or its synonym inspect
.
It evaluates and prints the value of an expression of the language your
program is written in (see section Using {No value for ‘GDBN’} with Different Languages).
print exp
print /f exp
exp is an expression (in the source language). By default the value of exp is printed in a format appropriate to its data type; you can choose a different format by specifying ‘/f’, where f is a letter specifying the format; see section Output formats.
print
print /f
If you omit exp, {No value for ‘GDBN’} displays the last value again (from the value history; see section Value history). This allows you to conveniently inspect the same value in an alternative format.
A more low-level way of examining data is with the x
command.
It examines data in memory at a specified address and prints it in a
specified format. See section Examining memory.
If you are interested in information about types, or about how the fields
of a struct
or class
are declared, use the ptype exp
command rather than print
. See section Examining the Symbol Table.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
print
and many other {No value for ‘GDBN’} commands accept an expression and
compute its value. Any kind of constant, variable or operator defined
by the programming language you are using is valid in an expression in
{No value for ‘GDBN’}. This includes conditional expressions, function calls, casts
and string constants. It unfortunately does not include symbols defined
by preprocessor #define
commands.
Because C is so widespread, most of the expressions shown in examples in this manual are in C. See section Using {No value for ‘GDBN’} with Different Languages, for information on how to use expressions in other languages.
In this section, we discuss operators that you can use in {No value for ‘GDBN’} expressions regardless of your programming language.
Casts are supported in all languages, not just in C, because it is so useful to cast a number into a pointer so as to examine a structure at that address in memory.
{No value for ‘GDBN’} supports these operators in addition to those of programming languages:
@
‘@’ is a binary operator for treating parts of memory as arrays. See section Artificial arrays, for more information.
::
‘::’ allows you to specify a variable in terms of the file or function where it is defined. See section Program variables.
{type} addr
Refers to an object of type type stored at address addr in memory. addr may be any expression whose value is an integer or pointer (but parentheses are required around binary operators, just as in a cast). This construct is allowed regardless of what kind of data is normally supposed to reside at addr.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The most common kind of expression to use is the name of a variable in your program.
Variables in expressions are understood in the selected stack frame (see section Selecting a frame); they must either be global (or static) or be visible according to the scope rules of the programming language from the point of execution in that frame. This means that in the function
foo (a) int a; { bar (a); { int b = test (); bar (b); } }
you can examine and use the variable a
whenever your program is
executing within the function foo
, but you can only use or
examine the variable b
while your program is executing inside
the block where b
is declared.
There is an exception: you can refer to a variable or function whose scope is a single source file even if the current execution point is not in this file. But it is possible to have more than one such variable or function with the same name (in different source files). If that happens, referring to that name has unpredictable effects. If you wish, you can specify a static variable in a particular function or file, using the colon-colon notation:
file::variable function::variable
Here file or function is the name of the context for the
static variable. In the case of file names, you can use quotes to
make sure {No value for ‘GDBN’} parses the file name as a single word—for example,
to print a global value of x
defined in ‘f2.c’:
({No value for `GDBP'}) p 'f2.c'::x
This use of ‘::’ is very rarely in conflict with the very similar use of the same notation in C++. {No value for ‘GDBN’} also supports use of the C++ scope resolution operator in {No value for ‘GDBN’} expressions.
Warning: Occasionally, a local variable may appear to have the wrong value at certain points in a function—just after entry to a new scope, and just before exit.
You may see this problem when you are stepping by machine instructions. This is because on most machines, it takes more than one instruction to set up a stack frame (including local variable definitions); if you are stepping by machine instructions, variables may appear to have the wrong values until the stack frame is completely built. On exit, it usually also takes more than one machine instruction to destroy a stack frame; after you begin stepping through that group of instructions, local variable definitions may be gone.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
It is often useful to print out several successive objects of the same type in memory; a section of an array, or an array of dynamically determined size for which only a pointer exists in the program.
You can do this by referring to a contiguous span of memory as an artificial array, using the binary operator ‘@’. The left operand of ‘@’ should be the first element of the desired array, as an individual object. The right operand should be the desired length of the array. The result is an array value whose elements are all of the type of the left argument. The first element is actually the left argument; the second element comes from bytes of memory immediately following those that hold the first element, and so on. Here is an example. If a program says
int *array = (int *) malloc (len * sizeof (int));
you can print the contents of array
with
p *array@len
The left operand of ‘@’ must reside in memory. Array values made with ‘@’ in this way behave just like other arrays in terms of subscripting, and are coerced to pointers when used in expressions. Artificial arrays most often appear in expressions via the value history (see section Value history), after printing one out.
Sometimes the artificial array mechanism is not quite enough; in
moderately complex data structures, the elements of interest may not
actually be adjacent—for example, if you are interested in the values
of pointers in an array. One useful work-around in this situation is
to use a convenience variable (see section Convenience variables) as a counter in an expression that prints the first
interesting value, and then repeat that expression via <RET>. For
instance, suppose you have an array dtab
of pointers to
structures, and you are interested in the values of a field fv
in each structure. Here is an example of what you might type:
set $i = 0 p dtab[$i++]->fv <RET> <RET> …
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
By default, {No value for ‘GDBN’} prints a value according to its data type. Sometimes this is not what you want. For example, you might want to print a number in hex, or a pointer in decimal. Or you might want to view data in memory at a certain address as a character string or as an instruction. To do these things, specify an output format when you print a value.
The simplest use of output formats is to say how to print a value
already computed. This is done by starting the arguments of the
print
command with a slash and a format letter. The format
letters supported are:
x
Regard the bits of the value as an integer, and print the integer in hexadecimal.
d
Print as integer in signed decimal.
u
Print as integer in unsigned decimal.
o
Print as integer in octal.
t
Print as integer in binary. The letter ‘t’ stands for “two”. (1)
a
Print as an address, both absolute in hexadecimal and as an offset from the nearest preceding symbol. You can use this format used to discover where (in what function) an unknown address is located:
({No value for `GDBP'}) p/a 0x54320 $3 = 0x54320 <_initialize_vx+396>
c
Regard as an integer and print it as a character constant.
f
Regard the bits of the value as a floating point number and print using typical floating point syntax.
For example, to print the program counter in hex (see section Registers), type
p/x $pc
Note that no space is required before the slash; this is because command names in {No value for ‘GDBN’} cannot contain a slash.
To reprint the last value in the value history with a different format,
you can use the print
command with just a format and no
expression. For example, ‘p/x’ reprints the last value in hex.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can use the command x
(for “examine”) to examine memory in
any of several formats, independently of your program’s data types.
x/nfu addr
x addr
x
Use the x
command to examine memory.
n, f, and u are all optional parameters that specify how much memory to display and how to format it; addr is an expression giving the address where you want to start displaying memory. If you use defaults for nfu, you need not type the slash ‘/’. Several commands set convenient defaults for addr.
The repeat count is a decimal integer; the default is 1. It specifies how much memory (counting by units u) to display.
The display format is one of the formats used by print
,
or ‘s’ (null-terminated string) or ‘i’ (machine instruction).
The default is ‘x’ (hexadecimal) initially, or the format from the
last time you used either x
or print
.
The unit size is any of
b
Bytes.
h
Halfwords (two bytes).
w
Words (four bytes). This is the initial default.
g
Giant words (eight bytes).
Each time you specify a unit size with x
, that size becomes the
default unit the next time you use x
. (For the ‘s’ and
‘i’ formats, the unit size is ignored and is normally not written.)
addr is the address where you want {No value for ‘GDBN’} to begin displaying
memory. The expression need not have a pointer value (though it may);
it is always interpreted as an integer address of a byte of memory.
See section Expressions, for more information on expressions. The default for
addr is usually just after the last address examined—but several
other commands also set the default address: info breakpoints
(to
the address of the last breakpoint listed), info line
(to the
starting address of a line), and print
(if you use it to display
a value from memory).
For example, ‘x/3uh 0x54320’ is a request to display three halfwords
(h
) of memory, formatted as unsigned decimal integers (‘u’),
starting at address 0x54320
. ‘x/4xw $sp’ prints the four
words (‘w’) of memory above the stack pointer (here, ‘$sp’;
see section Registers) in hexadecimal (‘x’).
Since the letters indicating unit sizes are all distinct from the letters specifying output formats, you do not have to remember whether unit size or format comes first; either order works. The output specifications ‘4xw’ and ‘4wx’ mean exactly the same thing. (However, the count n must come first; ‘wx4’ does not work.)
Even though the unit size u is ignored for the formats ‘s’
and ‘i’, you might still want to use a count n; for example,
‘3i’ specifies that you want to see three machine instructions,
including any operands. The command disassemble
gives an
alternative way of inspecting machine instructions; see section Source and machine code.
All the defaults for the arguments to x
are designed to make it
easy to continue scanning memory with minimal specifications each time
you use x
. For example, after you have inspected three machine
instructions with ‘x/3i addr’, you can inspect the next seven
with just ‘x/7’. If you use <RET> to repeat the x
command,
the repeat count n is used again; the other arguments default as
for successive uses of x
.
The addresses and contents printed by the x
command are not saved
in the value history because there is often too much of them and they
would get in the way. Instead, {No value for ‘GDBN’} makes these values available for
subsequent use in expressions as values of the convenience variables
$_
and $__
. After an x
command, the last address
examined is available for use in expressions in the convenience variable
$_
. The contents of that address, as examined, are available in
the convenience variable $__
.
If the x
command has a repeat count, the address and contents saved
are from the last memory unit printed; this is not the same as the last
address printed if several units were printed on the last line of output.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you find that you want to print the value of an expression frequently (to see how it changes), you might want to add it to the automatic display list so that {No value for ‘GDBN’} prints its value each time your program stops. Each expression added to the list is given a number to identify it; to remove an expression from the list, you specify that number. The automatic display looks like this:
2: foo = 38 3: bar[5] = (struct hack *) 0x3804
This display shows item numbers, expressions and their current values. As with
displays you request manually using x
or print
, you can
specify the output format you prefer; in fact, display
decides
whether to use print
or x
depending on how elaborate your
format specification is—it uses x
if you specify a unit size,
or one of the two formats (‘i’ and ‘s’) that are only
supported by x
; otherwise it uses print
.
display exp
Add the expression exp to the list of expressions to display each time your program stops. See section Expressions.
display
does not repeat if you press <RET> again after using it.
display/fmt exp
For fmt specifying only a display format and not a size or count, add the expression exp to the auto-display list but arrange to display it each time in the specified format fmt. See section Output formats.
display/fmt addr
For fmt ‘i’ or ‘s’, or including a unit-size or a number of units, add the expression addr as a memory address to be examined each time your program stops. Examining means in effect doing ‘x/fmt addr’. See section Examining memory.
For example, ‘display/i $pc’ can be helpful, to see the machine instruction about to be executed each time execution stops (‘$pc’ is a common name for the program counter; see section Registers).
undisplay dnums…
delete display dnums…
Remove item numbers dnums from the list of expressions to display.
undisplay
does not repeat if you press <RET> after using it.
(Otherwise you would just get the error ‘No display number …’.)
disable display dnums…
Disable the display of item numbers dnums. A disabled display item is not printed automatically, but is not forgotten. It may be enabled again later.
enable display dnums…
Enable display of item numbers dnums. It becomes effective once again in auto display of its expression, until you specify otherwise.
display
Display the current values of the expressions on the list, just as is done when your program stops.
info display
Print the list of expressions previously set up to display automatically, each one with its item number, but without showing the values. This includes disabled expressions, which are marked as such. It also includes expressions which would not be displayed right now because they refer to automatic variables not currently available.
If a display expression refers to local variables, then it does not make
sense outside the lexical context for which it was set up. Such an
expression is disabled when execution enters a context where one of its
variables is not defined. For example, if you give the command
display last_char
while inside a function with an argument
last_char
, {No value for ‘GDBN’} displays this argument while your program
continues to stop inside that function. When it stops elsewhere—where
there is no variable last_char
—the display is disabled
automatically. The next time your program stops where last_char
is meaningful, you can enable the display expression once again.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} provides the following ways to control how arrays, structures, and symbols are printed.
These settings are useful for debugging programs in any language:
set print address
set print address on
{No value for ‘GDBN’} prints memory addresses showing the location of stack
traces, structure values, pointer values, breakpoints, and so forth,
even when it also displays the contents of those addresses. The default
is on
. For example, this is what a stack frame display looks like, with
set print address on
:
({No value for `GDBP'}) f #0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>") at input.c:530 530 if (lquote != def_lquote)
set print address off
Do not print addresses when displaying their contents. For example,
this is the same stack frame displayed with set print address off
:
({No value for `GDBP'}) set print addr off ({No value for `GDBP'}) f #0 set_quotes (lq="<<", rq=">>") at input.c:530 530 if (lquote != def_lquote)
You can use ‘set print address off’ to eliminate all machine
dependent displays from the {No value for ‘GDBN’} interface. For example, with
print address off
, you should get the same text for backtraces on
all machines—whether or not they involve pointer arguments.
show print address
Show whether or not addresses are to be printed.
When {No value for ‘GDBN’} prints a symbolic address, it normally prints the
closest earlier symbol plus an offset. If that symbol does not uniquely
identify the address (for example, it is a name whose scope is a single
source file), you may need to disambiguate. One way to do this is with
info line
, for example ‘info line *0x4537’. Alternately,
you can set {No value for ‘GDBN’} to print the source file and line number when
it prints a symbolic address:
set print symbol-filename on
Tell {No value for ‘GDBN’} to print the source file name and line number of a symbol in the symbolic form of an address.
set print symbol-filename off
Do not print source file name and line number of a symbol. This is the default.
show print symbol-filename
Show whether or not {No value for ‘GDBN’} will print the source file name and line number of a symbol in the symbolic form of an address.
Another situation where it is helpful to show symbol filenames and line numbers is when disassembling code; {No value for ‘GDBN’} shows you the line number and source file that corresponds to each instruction.
Also, you may wish to see the symbolic form only if the address being printed is reasonably close to the closest earlier symbol:
set print max-symbolic-offset max-offset
Tell {No value for ‘GDBN’} to only display the symbolic form of an address if the offset between the closest earlier symbol and the address is less than max-offset. The default is 0, which means to always print the symbolic form of an address, if any symbol precedes it.
show print max-symbolic-offset
Ask how large the maximum offset is that {No value for ‘GDBN’} prints in a symbolic address.
Sometimes {No value for ‘GDBN’} can tell you more about an address if it does an extensive search of its symbol information. The default is to provide a quick symbolic display that is usually correct, but which may not give the most useful answer when working in some object file formats. If you are not getting the information you need, try:
set print fast-symbolic-addr off
Search all symbol information when displaying an address symbolically. This setting may display more information about static variables, for example, but also takes longer.
set print fast-symbolic-addr
set print fast-symbolic-addr on
Search only the “minimal symbol information” when displaying symbolic information about an address. This is the default.
show print fast-symbolic-addr
Ask whether {No value for ‘GDBN’} is using a fast or slow method of printing symbolic address.
If you have a pointer and you are not sure where it points, try
‘set print symbol-filename on’ and ‘set print
fast-symbolic-addr off’. Then you can determine the name and source
file location of the variable where it points, using ‘p/a
pointer’. This interprets the address in symbolic form. For
example, here {No value for ‘GDBN’} shows that a variable ptt
points at
another variable t
, defined in ‘hi2.c’:
({No value for `GDBP'}) set print fast-symbolic-addr off ({No value for `GDBP'}) set print symbol-filename on ({No value for `GDBP'}) p/a ptt $4 = 0xe008 <t in hi2.c>
Warning: For pointers that point to a local variable, ‘p/a’ does not show the symbol name and filename of the referent, even with the appropriate
set print
options turned on.
Other settings control how different kinds of objects are printed:
set print array
set print array on
Pretty-print arrays. This format is more convenient to read, but uses more space. The default is off.
set print array off
Return to compressed format for arrays.
show print array
Show whether compressed or pretty format is selected for displaying arrays.
set print elements number-of-elements
If {No value for ‘GDBN’} is printing a large array, it stops printing after it has
printed the number of elements set by the set print elements
command.
This limit also applies to the display of strings.
Setting the number of elements to zero means that the printing is unlimited.
show print elements
Display the number of elements of a large array that {No value for ‘GDBN’} prints before losing patience.
set print pretty on
Cause {No value for ‘GDBN’} to print structures in an indented format with one member per line, like this:
$1 = { next = 0x0, flags = { sweet = 1, sour = 1 }, meat = 0x54 "Pork" }
set print pretty off
Cause {No value for ‘GDBN’} to print structures in a compact format, like this:
$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \ meat = 0x54 "Pork"}
This is the default format.
show print pretty
Show which format {No value for ‘GDBN’} is using to print structures.
set print sevenbit-strings on
Print using only seven-bit characters; if this option is set,
{No value for ‘GDBN’} displays any eight-bit characters (in strings or
character values) using the notation \
nnn. This setting is
best if you are working in English (ASCII) and you use the
high-order bit of characters as a marker or “meta” bit.
set print sevenbit-strings off
Print full eight-bit characters. This allows the use of more international character sets, and is the default.
show print sevenbit-strings
Show whether or not {No value for ‘GDBN’} is printing only seven-bit characters.
set print union on
Tell {No value for ‘GDBN’} to print unions which are contained in structures. This is the default setting.
set print union off
Tell {No value for ‘GDBN’} not to print unions which are contained in structures.
show print union
Ask {No value for ‘GDBN’} whether or not it will print unions which are contained in structures.
For example, given the declarations
typedef enum {Tree, Bug} Species; typedef enum {Big_tree, Acorn, Seedling} Tree_forms; typedef enum {Caterpillar, Cocoon, Butterfly} Bug_forms; struct thing { Species it; union { Tree_forms tree; Bug_forms bug; } form; }; struct thing foo = {Tree, {Acorn}};
with set print union on
in effect ‘p foo’ would print
$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}
and with set print union off
in effect it would print
$1 = {it = Tree, form = {...}}
These settings are of interest when debugging C++ programs:
set print demangle
set print demangle on
Print C++ names in their source form rather than in the encoded (“mangled”) form passed to the assembler and linker for type-safe linkage. The default is ‘on’.
show print demangle
Show whether C++ names are printed in mangled or demangled form.
set print asm-demangle
set print asm-demangle on
Print C++ names in their source form rather than their mangled form, even in assembler code printouts such as instruction disassemblies. The default is off.
show print asm-demangle
Show whether C++ names in assembly listings are printed in mangled or demangled form.
set demangle-style style
Choose among several encoding schemes used by different compilers to represent C++ names. The choices for style are currently:
auto
Allow {No value for ‘GDBN’} to choose a decoding style by inspecting your program.
gnu
Decode based on the GNU C++ compiler (g++
) encoding algorithm.
lucid
Decode based on the Lucid C++ compiler (lcc
) encoding algorithm.
arm
Decode using the algorithm in the C++ Annotated Reference Manual.
Warning: this setting alone is not sufficient to allow
debugging cfront
-generated executables. {No value for ‘GDBN’} would
require further enhancement to permit that.
show demangle-style
Display the encoding style currently in use for decoding C++ symbols.
set print object
set print object on
When displaying a pointer to an object, identify the actual (derived) type of the object rather than the declared type, using the virtual function table.
set print object off
Display only the declared type of objects, without reference to the virtual function table. This is the default setting.
show print object
Show whether actual, or declared, object types are displayed.
set print vtbl
set print vtbl on
Pretty print C++ virtual function tables. The default is off.
set print vtbl off
Do not pretty print C++ virtual function tables.
show print vtbl
Show whether C++ virtual function tables are pretty printed, or not.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Values printed by the print
command are saved in the {No value for ‘GDBN’} value
history so that you can refer to them in other expressions. Values are
kept until the symbol table is re-read or discarded (for example with
the file
or symbol-file
commands). When the symbol table
changes, the value history is discarded, since the values may contain
pointers back to the types defined in the symbol table.
The values printed are given history numbers by which you can
refer to them. These are successive integers starting with one.
print
shows you the history number assigned to a value by
printing ‘$num = ’ before the value; here num is the
history number.
To refer to any previous value, use ‘$’ followed by the value’s
history number. The way print
labels its output is designed to
remind you of this. Just $
refers to the most recent value in
the history, and $$
refers to the value before that.
$$n
refers to the nth value from the end; $$2
is the value just prior to $$
, $$1
is equivalent to
$$
, and $$0
is equivalent to $
.
For example, suppose you have just printed a pointer to a structure and want to see the contents of the structure. It suffices to type
p *$
If you have a chain of structures where the component next
points
to the next one, you can print the contents of the next one with this:
p *$.next
You can print successive links in the chain by repeating this command—which you can do by just typing <RET>.
Note that the history records values, not expressions. If the value of
x
is 4 and you type these commands:
print x set x=5
then the value recorded in the value history by the print
command
remains 4 even though the value of x
has changed.
show values
Print the last ten values in the value history, with their item numbers.
This is like ‘p $$9’ repeated ten times, except that show
values
does not change the history.
show values n
Print ten history values centered on history item number n.
show values +
Print ten history values just after the values last printed. If no more values are available, produces no display.
Pressing <RET> to repeat show values n
has exactly the
same effect as ‘show values +’.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} provides convenience variables that you can use within {No value for ‘GDBN’} to hold on to a value and refer to it later. These variables exist entirely within {No value for ‘GDBN’}; they are not part of your program, and setting a convenience variable has no direct effect on further execution of your program. That is why you can use them freely.
Convenience variables are prefixed with ‘$’. Any name preceded by ‘$’ can be used for a convenience variable, unless it is one of the predefined machine-specific register names (see section Registers). (Value history references, in contrast, are numbers preceded by ‘$’. See section Value history.)
You can save a value in a convenience variable with an assignment expression, just as you would set a variable in your program. For example:
set $foo = *object_ptr
would save in $foo
the value contained in the object pointed to by
object_ptr
.
Using a convenience variable for the first time creates it, but its
value is void
until you assign a new value. You can alter the
value with another assignment at any time.
Convenience variables have no fixed types. You can assign a convenience variable any type of value, including structures and arrays, even if that variable already has a value of a different type. The convenience variable, when used as an expression, has the type of its current value.
show convenience
Print a list of convenience variables used so far, and their values.
Abbreviated show con
.
One of the ways to use a convenience variable is as a counter to be incremented or a pointer to be advanced. For example, to print a field from successive elements of an array of structures:
set $i = 0 print bar[$i++]->contents … repeat that command by typing <RET>.
Some convenience variables are created automatically by {No value for ‘GDBN’} and given values likely to be useful.
$_
The variable $_
is automatically set by the x
command to
the last address examined (see section Examining memory). Other
commands which provide a default address for x
to examine also
set $_
to that address; these commands include info line
and info breakpoint
. The type of $_
is void *
except when set by the x
command, in which case it is a pointer
to the type of $__
.
$__
The variable $__
is automatically set by the x
command
to the value found in the last address examined. Its type is chosen
to match the format in which the data was printed.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can refer to machine register contents, in expressions, as variables
with names starting with ‘$’. The names of registers are different
for each machine; use info registers
to see the names used on
your machine.
info registers
Print the names and values of all registers except floating-point registers (in the selected stack frame).
info all-registers
Print the names and values of all registers, including floating-point registers.
info registers regname …
Print the relativized value of each specified register regname. regname may be any register name valid on the machine you are using, with or without the initial ‘$’.
{No value for ‘GDBN’} has four “standard” register names that are available (in
expressions) on most machines—whenever they do not conflict with an
architecture’s canonical mnemonics for registers. The register names
$pc
and $sp
are used for the program counter register and
the stack pointer. $fp
is used for a register that contains a
pointer to the current stack frame, and $ps
is used for a
register that contains the processor status. For example,
you could print the program counter in hex with
p/x $pc
or print the instruction to be executed next with
x/i $pc
or add four to the stack pointer(2) with
set $sp += 4
Whenever possible, these four standard register names are available on
your machine even though the machine has different canonical mnemonics,
so long as there is no conflict. The info registers
command
shows the canonical names. For example, on the SPARC, info
registers
displays the processor status register as $psr
but you
can also refer to it as $ps
.
{No value for ‘GDBN’} always considers the contents of an ordinary register as an integer when the register is examined in this way. Some machines have special registers which can hold nothing but floating point; these registers are considered to have floating point values. There is no way to refer to the contents of an ordinary register as floating point value (although you can print it as a floating point value with ‘print/f $regname’).
Some registers have distinct “raw” and “virtual” data formats. This
means that the data format in which the register contents are saved by
the operating system is not the same one that your program normally
sees. For example, the registers of the 68881 floating point
coprocessor are always saved in “extended” (raw) format, but all C
programs expect to work with “double” (virtual) format. In such
cases, {No value for ‘GDBN’} normally works with the virtual format only (the format that
makes sense for your program), but the info registers
command
prints the data in both formats.
Normally, register values are relative to the selected stack frame (see section Selecting a frame). This means that you get the value that the register would contain if all stack frames farther in were exited and their saved registers restored. In order to see the true contents of hardware registers, you must select the innermost frame (with ‘frame 0’).
However, {No value for ‘GDBN’} must deduce where registers are saved, from the machine code generated by your compiler. If some registers are not saved, or if {No value for ‘GDBN’} is unable to locate the saved registers, the selected stack frame makes no difference.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Depending on the host machine architecture, {No value for ‘GDBN’} may be able to give you more information about the status of the floating point hardware.
info float
Display hardware-dependent information about the floating point unit. The exact contents and layout vary depending on the floating point chip; on some platforms, ‘info float’ is not available at all.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Language-specific information is built into {No value for ‘GDBN’} for some languages, allowing you to express operations like the above in your program’s native language, and allowing {No value for ‘GDBN’} to output values in a manner consistent with the syntax of your program’s native language. The language you use to build expressions, called the working language, can be selected manually, or {No value for ‘GDBN’} can set it automatically.
9.1 Switching between source languages | ||
9.2 Displaying the language | ||
9.3 Supported languages |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
There are two ways to control the working language—either have {No value for ‘GDBN’}
set it automatically, or select it manually yourself. You can use the
set language
command for either purpose. On startup, {No value for ‘GDBN’}
defaults to setting the language automatically.
9.1.1 Setting the working language | Setting the working language manually | |
9.1.2 Having {No value for ‘GDBN’} infer the source language |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you allow {No value for ‘GDBN’} to set the language automatically, expressions are interpreted the same way in your debugging session and your program.
If you wish, you may set the language manually. To do this, issue the
command ‘set language lang’, where lang is the name of
a language, such as
c
.
For a list of the supported languages, type ‘set language’.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
To have {No value for ‘GDBN’} set the working language automatically, use ‘set language local’ or ‘set language auto’. {No value for ‘GDBN’} then infers the language that a program was written in by looking at the name of its source files, and examining their extensions:
C source file
C++ source file
This information is recorded for each function or procedure in a source file. When your program stops in a frame (usually by encountering a breakpoint), {No value for ‘GDBN’} sets the working language to the language recorded for the function in that frame. If the language for a frame is unknown (that is, if the function or block corresponding to the frame was defined in a source file that does not have a recognized extension), the current working language is not changed, and {No value for ‘GDBN’} issues a warning.
This may not seem necessary for most programs, which are written entirely in one source language. However, program modules and libraries written in one source language can be used by a main program written in a different source language. Using ‘set language auto’ in this case frees you from having to set the working language manually.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The following commands help you find out which language is the working language, and also what language source files were written in.
show language
Display the current working language. This is the
language you can use with commands such as print
to
build and compute expressions that may involve variables in your program.
info frame
Among the other information listed here (see section Information about a frame) is the source language for this frame. This language becomes the working language if you use an identifier from this frame.
info source
Among the other information listed here (see section Examining the Symbol Table) is the source language of this source file.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} 4 supports C, and C++.
Some {No value for ‘GDBN’} features may be used in expressions regardless of the
language you use: the {No value for ‘GDBN’} @
and ::
operators,
and the ‘{type}addr’ construct (see section Expressions) can be used with the constructs of any supported
language.
The following sections detail to what degree each source language is supported by {No value for ‘GDBN’}. These sections are not meant to be language tutorials or references, but serve only as a reference guide to what the {No value for ‘GDBN’} expression parser accepts, and what input and output formats should look like for different languages. There are many good books written on each of these languages; please look to these for a language reference or tutorial.
The C++ debugging facilities are jointly implemented by the GNU C++
compiler and {No value for ‘GDBN’}. Therefore, to debug your C++ code
effectively, you must compile your C++ programs with the GNU C++
compiler, g++
.
For best results when debugging C++ programs, use the stabs debugging
format. You can select that format explicitly with the g++
command-line options ‘-gstabs’ or ‘-gstabs+’. See
Options for Debugging Your Program or GNU CC in Using GNU CC, for more information.
9.3.1 C and C++ operators | ||
9.3.2 C and C++ constants | ||
9.3.3 C++ expressions | ||
9.3.4 C and C++ defaults | Default settings for C and C++ | |
9.3.5 {No value for ‘GDBN’} and C | ||
9.3.6 {No value for ‘GDBN’} features for C++ | Special features for C++ |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Operators must be defined on values of specific types. For instance,
+
is defined on numbers, but not on structures. Operators are
often defined on groups of types.
For the purposes of C and C++, the following definitions hold:
int
with any of its storage-class
specifiers; char
; and enum
.
float
and double
.
(type
*)
.
The following operators are supported. They are listed here in order of increasing precedence:
,
The comma or sequencing operator. Expressions in a comma-separated list are evaluated from left to right, with the result of the entire expression being the last expression evaluated.
=
Assignment. The value of an assignment expression is the value assigned. Defined on scalar types.
op=
Used in an expression of the form a op= b
,
and translated to a = a op b
.
op=
and =
have the same precendence.
op is any one of the operators |
, ^
, &
,
<<
, >>
, +
, -
, *
, /
, %
.
?:
The ternary operator. a ? b : c
can be thought
of as: if a then b else c. a should be of an
integral type.
||
Logical OR. Defined on integral types.
&&
Logical AND. Defined on integral types.
|
Bitwise OR. Defined on integral types.
^
Bitwise exclusive-OR. Defined on integral types.
&
Bitwise AND. Defined on integral types.
==, !=
Equality and inequality. Defined on scalar types. The value of these expressions is 0 for false and non-zero for true.
<, >, <=, >=
Less than, greater than, less than or equal, greater than or equal. Defined on scalar types. The value of these expressions is 0 for false and non-zero for true.
<<, >>
left shift, and right shift. Defined on integral types.
@
The {No value for ‘GDBN’} “artificial array” operator (see section Expressions).
+, -
Addition and subtraction. Defined on integral types, floating-point types and pointer types.
*, /, %
Multiplication, division, and modulus. Multiplication and division are defined on integral and floating-point types. Modulus is defined on integral types.
++, --
Increment and decrement. When appearing before a variable, the operation is performed before the variable is used in an expression; when appearing after it, the variable’s value is used before the operation takes place.
*
Pointer dereferencing. Defined on pointer types. Same precedence as
++
.
&
Address operator. Defined on variables. Same precedence as ++
.
For debugging C++, {No value for ‘GDBN’} implements a use of ‘&’ beyond what is allowed in the C++ language itself: you can use ‘&(&ref)’ (or, if you prefer, simply ‘&&ref’) to examine the address where a C++ reference variable (declared with ‘&ref’) is stored.
-
Negative. Defined on integral and floating-point types. Same
precedence as ++
.
!
Logical negation. Defined on integral types. Same precedence as
++
.
~
Bitwise complement operator. Defined on integral types. Same precedence as
++
.
., ->
Structure member, and pointer-to-structure member. For convenience,
{No value for ‘GDBN’} regards the two as equivalent, choosing whether to dereference a
pointer based on the stored type information.
Defined on struct
and union
data.
[]
Array indexing. a[i]
is defined as
*(a+i)
. Same precedence as ->
.
()
Function parameter list. Same precedence as ->
.
::
C++ scope resolution operator. Defined on
struct
, union
, and class
types.
::
Doubled colons
also
represent the {No value for ‘GDBN’} scope operator (see section Expressions).
Same precedence as ::
, above.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} allows you to express the constants of C and C++ in the following ways:
long
value.
'
), or a number—the ordinal value of the corresponding character
(usually its ASCII value). Within quotes, the single character may
be represented by a letter or by escape sequences, which are of
the form ‘\nnn’, where nnn is the octal representation
of the character’s ordinal value; or of the form ‘\x’, where
‘x’ is a predefined special character—for example,
‘\n’ for newline.
"
).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} expression handling has a number of extensions to interpret a significant subset of C++ expressions.
Warning: {No value for ‘GDBN’} can only debug C++ code if you compile with the GNU C++ compiler. Moreover, C++ debugging depends on the use of additional debugging information in the symbol table, and thus requires special support. {No value for ‘GDBN’} has this support only with the stabs debug format. In particular, if your compiler generates a.out, MIPS ECOFF, RS/6000 XCOFF, or ELF with stabs extensions to the symbol table, these facilities are all available. (With GNU CC, you can use the ‘-gstabs’ option to request stabs debugging extensions explicitly.) Where the object code format is standard COFF or DWARF in ELF, on the other hand, most of the C++ support in {No value for ‘GDBN’} does not work.
count = aml->GetOriginal(x, y)
this
following the same rules as C++.
In the parameter list shown when {No value for ‘GDBN’} displays a frame, the values of reference variables are not displayed (unlike other variables); this avoids clutter, since references are often used for large structures. The address of a reference variable is always shown, unless you have specified ‘set print address off’.
::
—your
expressions can use it just as expressions in your program do. Since
one scope may be defined in another, you can use ::
repeatedly if
necessary, for example in an expression like
‘scope1::scope2::name’. {No value for ‘GDBN’} also allows
resolving name scope by reference to source files, in both C and C++
debugging (see section Program variables).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you allow {No value for ‘GDBN’} to set type and range checking automatically, they
both default to off
whenever the working language changes to
C or C++. This happens regardless of whether you, or {No value for ‘GDBN’},
selected the working language.
If you allow {No value for ‘GDBN’} to set the language automatically, it sets the working language to C or C++ on entering code compiled from a source file whose name ends with ‘.c’, ‘.C’, or ‘.cc’. See section Having {No value for ‘GDBN’} infer the source language, for further details.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The set print union
and show print union
commands apply to
the union
type. When set to ‘on’, any union
that is
inside a struct
or class
is also printed.
Otherwise, it appears as ‘{...}’.
The @
operator aids in the debugging of dynamic arrays, formed
with pointers and a memory allocation function. See section Expressions.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Some {No value for ‘GDBN’} commands are particularly useful with C++, and some are designed specifically for use with C++. Here is a summary:
breakpoint menus
When you want a breakpoint in a function whose name is overloaded, {No value for ‘GDBN’} breakpoint menus help you specify which function definition you want. See section Breakpoint menus.
rbreak regex
Setting breakpoints using regular expressions is helpful for setting breakpoints on overloaded functions that are not members of any special classes. See section Setting breakpoints.
catch exceptions
info catch
Debug C++ exception handling using these commands. See section Breakpoints and exceptions.
ptype typename
Print inheritance relationships as well as other information for type typename. See section Examining the Symbol Table.
set print demangle
show print demangle
set print asm-demangle
show print asm-demangle
Control whether C++ symbols display in their source form, both when displaying code as C++ source and when displaying disassemblies. See section Print settings.
set print object
show print object
Choose whether to print derived (actual) or declared types of objects. See section Print settings.
set print vtbl
show print vtbl
Control the format for printing virtual function tables. See section Print settings.
Overloaded symbol names
You can specify a particular definition of an overloaded symbol, using
the same notation that is used to declare such symbols in C++: type
symbol(types)
rather than just symbol. You can
also use the {No value for ‘GDBN’} command-line word completion facilities to list the
available choices, or to finish the type list for you.
See section Command completion, for details on how to do this.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The commands described in this section allow you to inquire about the symbols (names of variables, functions and types) defined in your program. This information is inherent in the text of your program and does not change as your program executes. {No value for ‘GDBN’} finds it in your program’s symbol table, in the file indicated when you started {No value for ‘GDBN’} (see section Choosing files), or by one of the file-management commands (see section Commands to specify files).
Occasionally, you may need to refer to symbols that contain unusual characters, which {No value for ‘GDBN’} ordinarily treats as word delimiters. The most frequent case is in referring to static variables in other source files (see section Program variables). File names are recorded in object files as debugging symbols, but {No value for ‘GDBN’} would ordinarily parse a typical file name, like ‘foo.c’, as the three words ‘foo’ ‘.’ ‘c’. To allow {No value for ‘GDBN’} to recognize ‘foo.c’ as a single symbol, enclose it in single quotes; for example,
p 'foo.c'::x
looks up the value of x
in the scope of the file ‘foo.c’.
info address symbol
Describe where the data for symbol is stored. For a register variable, this says which register it is kept in. For a non-register local variable, this prints the stack-frame offset at which the variable is always stored.
Note the contrast with ‘print &symbol’, which does not work at all for a register variable, and for a stack local variable prints the exact address of the current instantiation of the variable.
whatis exp
Print the data type of expression exp. exp is not actually evaluated, and any side-effecting operations (such as assignments or function calls) inside it do not take place. See section Expressions.
whatis
Print the data type of $
, the last value in the value history.
ptype typename
Print a description of data type typename. typename may be the name of a type, or for C code it may have the form ‘class class-name’, ‘struct struct-tag’, ‘union union-tag’ or ‘enum enum-tag’.
ptype exp
ptype
Print a description of the type of expression exp. ptype
differs from whatis
by printing a detailed description, instead
of just the name of the type.
For example, for this variable declaration:
struct complex {double real; double imag;} v;
the two commands give this output:
({No value for `GDBP'}) whatis v type = struct complex ({No value for `GDBP'}) ptype v type = struct complex { double real; double imag; }
As with whatis
, using ptype
without an argument refers to
the type of $
, the last value in the value history.
info types regexp
info types
Print a brief description of all types whose name matches regexp
(or all types in your program, if you supply no argument). Each
complete typename is matched as though it were a complete line; thus,
‘i type value’ gives information on all types in your program whose
name includes the string value
, but ‘i type ^value$’ gives
information only on types whose complete name is value
.
This command differs from ptype
in two ways: first, like
whatis
, it does not print a detailed description; second, it
lists all source files where a type is defined.
info source
Show the name of the current source file—that is, the source file for the function containing the current point of execution—and the language it was written in.
info sources
Print the names of all source files in your program for which there is debugging information, organized into two lists: files whose symbols have already been read, and files whose symbols will be read when needed.
info functions
Print the names and data types of all defined functions.
info functions regexp
Print the names and data types of all defined functions
whose names contain a match for regular expression regexp.
Thus, ‘info fun step’ finds all functions whose names
include step
; ‘info fun ^step’ finds those whose names
start with step
.
info variables
Print the names and data types of all variables that are declared outside of functions (i.e., excluding local variables).
info variables regexp
Print the names and data types of all variables (except for local variables) whose names contain a match for regular expression regexp.
maint print symbols filename
maint print psymbols filename
maint print msymbols filename
Write a dump of debugging symbol data into the file filename.
These commands are used to debug the {No value for ‘GDBN’} symbol-reading code. Only
symbols with debugging data are included. If you use ‘maint print
symbols’, {No value for ‘GDBN’} includes all the symbols for which it has already
collected full details: that is, filename reflects symbols for
only those files whose symbols {No value for ‘GDBN’} has read. You can use the
command info sources
to find out which files these are. If you
use ‘maint print psymbols’ instead, the dump shows information about
symbols that {No value for ‘GDBN’} only knows partially—that is, symbols defined in
files that {No value for ‘GDBN’} has skimmed, but not yet read completely. Finally,
‘maint print msymbols’ dumps just the minimal symbol information
required for each object file from which {No value for ‘GDBN’} has read some symbols.
See section Commands to specify files, for a discussion of how
{No value for ‘GDBN’} reads symbols (in the description of symbol-file
).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Once you think you have found an error in your program, you might want to find out for certain whether correcting the apparent error would lead to correct results in the rest of the run. You can find the answer by experiment, using the {No value for ‘GDBN’} features for altering execution of the program.
For example, you can store new values into variables or memory locations, give your program a signal, restart it at a different address, or even return prematurely from a function to its caller.
11.1 Assignment to variables | ||
11.2 Continuing at a different address | ||
11.3 Giving your program a signal | ||
11.4 Returning from a function | ||
11.5 Calling program functions | Calling your program’s functions | |
11.6 Patching programs | Patching your program |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
To alter the value of a variable, evaluate an assignment expression. See section Expressions. For example,
print x=4
stores the value 4 into the variable x
, and then prints the
value of the assignment expression (which is 4).
See section Using {No value for ‘GDBN’} with Different Languages, for more
information on operators in supported languages.
If you are not interested in seeing the value of the assignment, use the
set
command instead of the print
command. set
is
really the same as print
except that the expression’s value is
not printed and is not put in the value history (see section Value history). The expression is evaluated only for its effects.
If the beginning of the argument string of the set
command
appears identical to a set
subcommand, use the set
variable
command instead of just set
. This command is identical
to set
except for its lack of subcommands. For example, if
your program has a variable width
, you get
an error if you try to set a new value with just ‘set width=13’,
because {No value for ‘GDBN’} has the command set width
:
({No value for `GDBP'}) whatis width type = double ({No value for `GDBP'}) p width $4 = 13 ({No value for `GDBP'}) set width=47 Invalid syntax in expression.
The invalid expression, of course, is ‘=47’. In
order to actually set the program’s variable width
, use
({No value for `GDBP'}) set var width=47
{No value for ‘GDBN’} allows more implicit conversions in assignments than C; you can freely store an integer value into a pointer variable or vice versa, and you can convert any structure to any other structure that is the same length or shorter.
To store values into arbitrary places in memory, use the ‘{…}’
construct to generate a value of specified type at a specified address
(see section Expressions). For example, {int}0x83040
refers
to memory location 0x83040
as an integer (which implies a certain size
and representation in memory), and
set {int}0x83040 = 4
stores the value 4 into that memory location.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Ordinarily, when you continue your program, you do so at the place where
it stopped, with the continue
command. You can instead continue at
an address of your own choosing, with the following commands:
jump linespec
Resume execution at line linespec. Execution stops again immediately if there is a breakpoint there. See section Printing source lines, for a description of the different forms of linespec.
The jump
command does not change the current stack frame, or
the stack pointer, or the contents of any memory location or any
register other than the program counter. If line linespec is in
a different function from the one currently executing, the results may
be bizarre if the two functions expect different patterns of arguments or
of local variables. For this reason, the jump
command requests
confirmation if the specified line is not in the function currently
executing. However, even bizarre results are predictable if you are
well acquainted with the machine-language code of your program.
jump *address
Resume execution at the instruction at address address.
You can get much the same effect as the jump
command by storing a
new value into the register $pc
. The difference is that this
does not start your program running; it only changes the address where it
will run when you continue. For example,
set $pc = 0x485
makes the next continue
command or stepping command execute at
address 0x485
, rather than at the address where your program stopped.
See section Continuing and stepping.
The most common occasion to use the jump
command is to back up,
perhaps with more breakpoints set, over a portion of a program that has
already executed, in order to examine its execution in more detail.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
signal signal
Resume execution where your program stopped, but immediately give it the
signal signal. signal can be the name or the number of a
signal. For example, on many systems signal 2
and signal
SIGINT
are both ways of sending an interrupt signal.
Alternatively, if signal is zero, continue execution without
giving a signal. This is useful when your program stopped on account of
a signal and would ordinary see the signal when resumed with the
continue
command; ‘signal 0’ causes it to resume without a
signal.
signal
does not repeat when you press <RET> a second time
after executing the command.
Invoking the signal
command is not the same as invoking the
kill
utility from the shell. Sending a signal with kill
causes {No value for ‘GDBN’} to decide what to do with the signal depending on
the signal handling tables (@pxref{Signals}). The signal
command
passes the signal directly to your program.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
return
return expression
You can cancel execution of a function call with the return
command. If you give an
expression argument, its value is used as the function’s return
value.
When you use return
, {No value for ‘GDBN’} discards the selected stack frame
(and all frames within it). You can think of this as making the
discarded frame return prematurely. If you wish to specify a value to
be returned, give that value as the argument to return
.
This pops the selected stack frame (see section Selecting a frame), and any other frames inside of it, leaving its caller as the innermost remaining frame. That frame becomes selected. The specified value is stored in the registers used for returning values of functions.
The return
command does not resume execution; it leaves the
program stopped in the state that would exist if the function had just
returned. In contrast, the finish
command (see section Continuing and stepping) resumes execution until the
selected stack frame returns naturally.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
call expr
Evaluate the expression expr without displaying void
returned values.
You can use this variant of the print
command if you want to
execute a function from your program, but without cluttering the output
with void
returned values. The result is printed and saved in
the value history, if it is not void.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
By default, {No value for ‘GDBN’} opens the file containing your program’s executable code (or the corefile) read-only. This prevents accidental alterations to machine code; but it also prevents you from intentionally patching your program’s binary.
If you’d like to be able to patch the binary, you can specify that
explicitly with the set write
command. For example, you might
want to turn on internal debugging flags, or even to make emergency
repairs.
set write on
set write off
If you specify ‘set write on’, {No value for ‘GDBN’} opens executable and core files for both reading and writing; if you specify ‘set write off’ (the default), {No value for ‘GDBN’} opens them read-only.
If you have already loaded a file, you must load it again (using the
exec-file
or core-file
command) after changing set write
, for your new setting to take
effect.
show write
Display whether executable files and core files are opened for writing as well as reading.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} needs to know the file name of the program to be debugged, both in order to read its symbol table and in order to start your program. To debug a core dump of a previous run, you must also tell {No value for ‘GDBN’} the name of the core dump file.
12.1 Commands to specify files | ||
12.2 Errors reading symbol files |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The usual way to specify executable and core dump file names is with the command arguments given when you start {No value for ‘GDBN’} (see section Getting In and Out of {No value for ‘GDBN’}.
Occasionally it is necessary to change to a different file during a {No value for ‘GDBN’} session. Or you may run {No value for ‘GDBN’} and forget to specify a file you want to use. In these situations the {No value for ‘GDBN’} commands to specify new files are useful.
file filename
Use filename as the program to be debugged. It is read for its
symbols and for the contents of pure memory. It is also the program
executed when you use the run
command. If you do not specify a
directory and the file is not found in the {No value for ‘GDBN’} working directory, {No value for ‘GDBN’}
uses the environment variable PATH
as a list of directories to
search, just as the shell does when looking for a program to run. You
can change the value of this variable, for both {No value for ‘GDBN’} and your program,
using the path
command.
On systems with memory-mapped files, an auxiliary file
‘filename.syms’ may hold symbol table information for
filename. If so, {No value for ‘GDBN’} maps in the symbol table from
‘filename.syms’, starting up more quickly. See the
descriptions of the options ‘-mapped’ and ‘-readnow’
(available on the command line, and with the commands file
,
symbol-file
, or add-symbol-file
), for more information.
file
file
with no argument makes {No value for ‘GDBN’} discard any information it
has on both executable file and the symbol table.
exec-file [ filename ]
Specify that the program to be run (but not the symbol table) is found
in filename. {No value for ‘GDBN’} searches the environment variable PATH
if necessary to locate your program. Omitting filename means to
discard information on the executable file.
symbol-file [ filename ]
Read symbol table information from file filename. PATH
is
searched when necessary. Use the file
command to get both symbol
table and program to run from the same file.
symbol-file
with no argument clears out {No value for ‘GDBN’} information on your
program’s symbol table.
The symbol-file
command causes {No value for ‘GDBN’} to forget the contents of its
convenience variables, the value history, and all breakpoints and
auto-display expressions. This is because they may contain pointers to
the internal data recording symbols and data types, which are part of
the old symbol table data being discarded inside {No value for ‘GDBN’}.
symbol-file
does not repeat if you press <RET> again after
executing it once.
When {No value for ‘GDBN’} is configured for a particular environment, it
understands debugging information in whatever format is the standard
generated for that environment; you may use either a GNU compiler, or
other compilers that adhere to the local conventions. Best results are
usually obtained from GNU compilers; for example, using {No value for `GCC'}
you can generate debugging information for optimized code.
On some kinds of object files, the symbol-file
command does not
normally read the symbol table in full right away. Instead, it scans
the symbol table quickly to find which source files and which symbols
are present. The details are read later, one source file at a time,
as they are needed.
The purpose of this two-stage reading strategy is to make {No value for ‘GDBN’} start up
faster. For the most part, it is invisible except for occasional
pauses while the symbol table details for a particular source file are
being read. (The set verbose
command can turn these pauses
into messages if desired. See section Optional warnings and messages.)
We have not implemented the two-stage strategy for COFF yet. When the
symbol table is stored in COFF format, symbol-file
reads the
symbol table data in full right away.
symbol-file filename [ -readnow ] [ -mapped ]
file filename [ -readnow ] [ -mapped ]
You can override the {No value for ‘GDBN’} two-stage strategy for reading symbol tables by using the ‘-readnow’ option with any of the commands that load symbol table information, if you want to be sure {No value for ‘GDBN’} has the entire symbol table available.
If memory-mapped files are available on your system through the
mmap
system call, you can use another option, ‘-mapped’, to
cause {No value for ‘GDBN’} to write the symbols for your program into a reusable
file. Future {No value for ‘GDBN’} debugging sessions map in symbol information
from this auxiliary symbol file (if the program has not changed), rather
than spending time reading the symbol table from the executable
program. Using the ‘-mapped’ option has the same effect as
starting {No value for ‘GDBN’} with the ‘-mapped’ command-line option.
You can use both options together, to make sure the auxiliary symbol file has all the symbol information for your program.
The auxiliary symbol file for a program called myprog is called ‘myprog.syms’. Once this file exists (so long as it is newer than the corresponding executable), {No value for ‘GDBN’} always attempts to use it when you debug myprog; no special options or commands are needed.
The ‘.syms’ file is specific to the host machine where you run {No value for ‘GDBN’}. It holds an exact image of the internal {No value for ‘GDBN’} symbol table. It cannot be shared across multiple host platforms.
core-file [ filename ]
Specify the whereabouts of a core dump file to be used as the “contents of memory”. Traditionally, core files contain only some parts of the address space of the process that generated them; {No value for ‘GDBN’} can access the executable file itself for other parts.
core-file
with no argument specifies that no core file is
to be used.
Note that the core file is ignored when your program is actually running
under {No value for ‘GDBN’}. So, if you have been running your program and you wish to
debug a core file instead, you must kill the subprocess in which the
program is running. To do this, use the kill
command
(see section Killing the child process).
load filename
The file is loaded at whatever address is specified in the executable. For some object file formats, you can specify the load address when you link the program; for other formats, like a.out, the object file format specifies a fixed address.
load
does not repeat if you press <RET> again after using it.
add-symbol-file filename address
add-symbol-file filename address [ -readnow ] [ -mapped ]
The add-symbol-file
command reads additional symbol table information
from the file filename. You would use this command when filename
has been dynamically loaded (by some other means) into the program that
is running. address should be the memory address at which the
file has been loaded; {No value for ‘GDBN’} cannot figure this out for itself.
You can specify address as an expression.
The symbol table of the file filename is added to the symbol table
originally read with the symbol-file
command. You can use the
add-symbol-file
command any number of times; the new symbol data thus
read keeps adding to the old. To discard all old symbol data instead,
use the symbol-file
command.
add-symbol-file
does not repeat if you press <RET> after using it.
You can use the ‘-mapped’ and ‘-readnow’ options just as with
the symbol-file
command, to change how {No value for ‘GDBN’} manages the symbol
table information for filename.
info files
info target
info files
and info target
are synonymous; both print
the current target (see section Specifying a Debugging Target),
including the
names of the executable and core dump files
currently in use by {No value for ‘GDBN’}, and the files from which symbols were
loaded. The command help targets
lists all possible targets
rather than current ones.
All file-specifying commands allow both absolute and relative file names as arguments. {No value for ‘GDBN’} always converts the file name to an absolute path name and remembers it that way.
{No value for ‘GDBN’} supports SunOS, SVr4, Irix 5, and IBM RS/6000 shared libraries.
{No value for ‘GDBN’} automatically loads symbol definitions from shared libraries
when you use the run
command, or when you examine a core file.
(Before you issue the run
command, {No value for ‘GDBN’} does not understand
references to a function in a shared library, however—unless you are
debugging a core file).
info share
info sharedlibrary
Print the names of the shared libraries which are currently loaded.
sharedlibrary regex
share regex
This is an obsolescent command; you can use it to explicitly load shared
object library symbols for files matching a Unix regular expression, but
as with files loaded automatically, it only loads shared libraries
required by your program for a core file or after typing run
. If
regex is omitted all shared libraries required by your program are
loaded.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
While reading a symbol file, {No value for ‘GDBN’} occasionally encounters problems,
such as symbol types it does not recognize, or known bugs in compiler
output. By default, {No value for ‘GDBN’} does not notify you of such problems, since
they are relatively common and primarily of interest to people
debugging compilers. If you are interested in seeing information
about ill-constructed symbol tables, you can either ask {No value for ‘GDBN’} to print
only one message about each such type of problem, no matter how many
times the problem occurs; or you can ask {No value for ‘GDBN’} to print more messages,
to see how many times the problems occur, with the set
complaints
command (see section Optional warnings and messages).
The messages currently printed, and their meanings, include:
inner block not inside outer block in symbol
The symbol information shows where symbol scopes begin and end (such as at the start of a function or a block of statements). This error indicates that an inner scope block is not fully contained in its outer scope blocks.
{No value for ‘GDBN’} circumvents the problem by treating the inner block as if it had
the same scope as the outer block. In the error message, symbol
may be shown as “(don't know)
” if the outer block is not a
function.
block at address out of order
The symbol information for symbol scope blocks should occur in order of increasing addresses. This error indicates that it does not do so.
{No value for ‘GDBN’} does not circumvent this problem, and has trouble
locating symbols in the source file whose symbols it is reading. (You
can often determine what source file is affected by specifying
set verbose on
. See section Optional warnings and messages.)
bad block start address patched
The symbol information for a symbol scope block has a start address smaller than the address of the preceding source line. This is known to occur in the SunOS 4.1.1 (and earlier) C compiler.
{No value for ‘GDBN’} circumvents the problem by treating the symbol scope block as starting on the previous source line.
bad string table offset in symbol n
Symbol number n contains a pointer into the string table which is larger than the size of the string table.
{No value for ‘GDBN’} circumvents the problem by considering the symbol to have the
name foo
, which may cause other problems if many symbols end up
with this name.
unknown symbol type 0xnn
The symbol information contains new data types that {No value for ‘GDBN’} does not yet
know how to read. 0xnn
is the symbol type of the misunderstood
information, in hexadecimal.
{No value for ‘GDBN’} circumvents the error by ignoring this symbol information. This
usually allows you to debug your program, though certain symbols
are not accessible. If you encounter such a problem and feel like
debugging it, you can debug {No value for `GDBP'}
with itself, breakpoint on
complain
, then go up to the function read_dbx_symtab
and
examine *bufp
to see the symbol.
stub type has NULL name
{No value for ‘GDBN’} could not find the full definition for a struct or class.
const/volatile indicator missing (ok if using g++ v1.x), got…
The symbol information for a C++ member function is missing some information that recent versions of the compiler should have output for it.
info mismatch between compiler and debugger
{No value for ‘GDBN’} could not parse a type specification output by the compiler.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A target is the execution environment occupied by your program.
Often, {No value for ‘GDBN’} runs in the same host environment as your program; in
that case, the debugging target is specified as a side effect when you
use the file
or core
commands. When you need more
flexibility—for example, running {No value for ‘GDBN’} on a physically separate
host, or controlling a standalone system over a serial port or a
realtime system over a TCP/IP connection—you
can use the target
command to specify one of the target types
configured for {No value for ‘GDBN’} (see section Commands for managing targets).
13.1 Active targets | ||
13.2 Commands for managing targets | ||
13.3 Remote debugging |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
There are three classes of targets: processes, core files, and executable files. {No value for ‘GDBN’} can work concurrently on up to three active targets, one in each class. This allows you to (for example) start a process and inspect its activity without abandoning your work on a core file.
For example, if you execute ‘gdb a.out’, then the executable file
a.out
is the only active target. If you designate a core file as
well—presumably from a prior run that crashed and coredumped—then
{No value for ‘GDBN’} has two active targets and uses them in tandem, looking
first in the corefile target, then in the executable file, to satisfy
requests for memory addresses. (Typically, these two classes of target
are complementary, since core files contain only a program’s
read-write memory—variables and so on—plus machine status, while
executable files contain only the program text and initialized data.)
When you type run
, your executable file becomes an active process
target as well. When a process target is active, all {No value for ‘GDBN’} commands
requesting memory addresses refer to that target; addresses in an
active core file or
executable file target are obscured while the process
target is active.
Use the core-file
and exec-file
commands to select a
new core file or executable target (see section Commands to specify files). To specify as a target a process that is already running, use
the attach
command (see section Debugging an already-running process).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
target type parameters
Connects the {No value for ‘GDBN’} host environment to a target machine or process. A target is typically a protocol for talking to debugging facilities. You use the argument type to specify the type or protocol of the target machine.
Further parameters are interpreted by the target protocol, but typically include things like device names or host names to connect with, process numbers, and baud rates.
The target
command does not repeat if you press <RET> again
after executing the command.
help target
Displays the names of all targets available. To display targets
currently selected, use either info target
or info files
(see section Commands to specify files).
help target name
Describe a particular target, including any parameters necessary to select it.
Here are some common targets (available, or not, depending on the GDB configuration):
target exec program
An executable file. ‘target exec program’ is the same as ‘exec-file program’.
target core filename
A core dump file. ‘target core filename’ is the same as ‘core-file filename’.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you are trying to debug a program running on a machine that cannot run GDB in the usual way, it is often useful to use remote debugging. For example, you might use remote debugging on an operating system kernel, or on a small system which does not have a general purpose operating system powerful enough to run a full-featured debugger.
Some configurations of GDB have special serial or TCP/IP interfaces to make this work with particular debugging targets. In addition, GDB comes with a generic serial protocol (specific to GDB, but not specific to any particular target system) which you can use if you write the remote stubs—the code that runs on the remote system to communicate with GDB.
Other remote targets may be available in your
configuration of GDB; use help targets
to list them.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can alter the way {No value for ‘GDBN’} interacts with you by using
the set
command. For commands controlling how {No value for ‘GDBN’} displays
data, see section Print settings; other settings are described here.
14.1 Prompt | ||
14.2 Command editing | ||
14.3 Command history | ||
14.4 Screen size | ||
14.5 Numbers | ||
14.6 Optional warnings and messages |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} indicates its readiness to read a command by printing a string
called the prompt. This string is normally ‘({No value for `GDBP'})’. You
can change the prompt string with the set prompt
command. For
instance, when debugging {No value for ‘GDBN’} with {No value for ‘GDBN’}, it is useful to change
the prompt in one of the {No value for ‘GDBN’} sessions so that you can always tell which
one you are talking to.
set prompt newprompt
Directs {No value for ‘GDBN’} to use newprompt as its prompt string henceforth.
show prompt
Prints a line of the form: ‘Gdb's prompt is: your-prompt’
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} reads its input commands via the readline interface. This
GNU library provides consistent behavior for programs which provide a
command line interface to the user. Advantages are emacs
-style
or vi
-style inline editing of commands, csh
-like history
substitution, and a storage and recall of command history across
debugging sessions.
You may control the behavior of command line editing in {No value for ‘GDBN’} with the
command set
.
set editing
set editing on
Enable command line editing (enabled by default).
set editing off
Disable command line editing.
show editing
Show whether command line editing is enabled.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
{No value for ‘GDBN’} can keep track of the commands you type during your debugging sessions, so that you can be certain of precisely what happened. Use these commands to manage the {No value for ‘GDBN’} command history facility.
set history filename fname
Set the name of the {No value for ‘GDBN’} command history file to fname.
This is the file where {No value for ‘GDBN’} reads an initial command history
list, and where it writes the command history from this session when it
exits. You can access this list through history expansion or through
the history command editing characters listed below. This file defaults
to the value of the environment variable GDBHISTFILE
, or to
‘./.gdb_history’ if this variable is not set.
set history save
set history save on
Record command history in a file, whose name may be specified with the
set history filename
command. By default, this option is disabled.
set history save off
Stop recording command history in a file.
set history size size
Set the number of commands which {No value for ‘GDBN’} keeps in its history list.
This defaults to the value of the environment variable
HISTSIZE
, or to 256 if this variable is not set.
History expansion assigns special meaning to the character !.
Since ! is also the logical not operator in C, history expansion
is off by default. If you decide to enable history expansion with the
set history expansion on
command, you may sometimes need to
follow ! (when it is used as logical not, in an expression) with
a space or a tab to prevent it from being expanded. The readline
history facilities do not attempt substitution on the strings
!= and !(, even when history expansion is enabled.
The commands to control history expansion are:
set history expansion on
set history expansion
Enable history expansion. History expansion is off by default.
set history expansion off
Disable history expansion.
The readline code comes with more complete documentation of
editing and history expansion features. Users unfamiliar with emacs
or vi
may wish to read it.
show history
show history filename
show history save
show history size
show history expansion
These commands display the state of the {No value for ‘GDBN’} history parameters.
show history
by itself displays all four states.
show commands
Display the last ten commands in the command history.
show commands n
Print ten commands centered on command number n.
show commands +
Print ten commands just after the commands last printed.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Certain commands to {No value for ‘GDBN’} may produce large amounts of information output to the screen. To help you read all of it, {No value for ‘GDBN’} pauses and asks you for input at the end of each page of output. Type <RET> when you want to continue the output, or q to discard the remaining output. Also, the screen width setting determines when to wrap lines of output. Depending on what is being printed, {No value for ‘GDBN’} tries to break the line at a readable place, rather than simply letting it overflow onto the following line.
Normally {No value for ‘GDBN’} knows the size of the screen from the termcap data base
together with the value of the TERM
environment variable and the
stty rows
and stty cols
settings. If this is not correct,
you can override it with the set height
and set
width
commands:
set height lpp
show height
set width cpl
show width
These set
commands specify a screen height of lpp lines and
a screen width of cpl characters. The associated show
commands display the current settings.
If you specify a height of zero lines, {No value for ‘GDBN’} does not pause during output no matter how long the output is. This is useful if output is to a file or to an editor buffer.
Likewise, you can specify ‘set width 0’ to prevent {No value for ‘GDBN’} from wrapping its output.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You can always enter numbers in octal, decimal, or hexadecimal in {No value for ‘GDBN’} by
the usual conventions: octal numbers begin with ‘0’, decimal
numbers end with ‘.’, and hexadecimal numbers begin with ‘0x’.
Numbers that begin with none of these are, by default, entered in base
10; likewise, the default display for numbers—when no particular
format is specified—is base 10. You can change the default base for
both input and output with the set radix
command.
set radix base
Set the default base for numeric input and display. Supported choices for base are decimal 8, 10, or 16. base must itself be specified either unambiguously or using the current default radix; for example, any of
set radix 012 set radix 10. set radix 0xa
sets the base to decimal. On the other hand, ‘set radix 10’ leaves the radix unchanged no matter what it was.
show radix
Display the current default base for numeric input and display.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
By default, {No value for ‘GDBN’} is silent about its inner workings. If you are running
on a slow machine, you may want to use the set verbose
command.
It makes {No value for ‘GDBN’} tell you when it does a lengthy internal operation, so
you will not think it has crashed.
Currently, the messages controlled by set verbose
are those
which announce that the symbol table for a source file is being read;
see symbol-file
in Commands to specify files.
set verbose on
Enables {No value for ‘GDBN’} output of certain informational messages.
set verbose off
Disables {No value for ‘GDBN’} output of certain informational messages.
show verbose
Displays whether set verbose
is on or off.
By default, if {No value for ‘GDBN’} encounters bugs in the symbol table of an object file, it is silent; but if you are debugging a compiler, you may find this information useful (see section Errors reading symbol files).
set complaints limit
Permits {No value for ‘GDBN’} to output limit complaints about each type of unusual symbols before becoming silent about the problem. Set limit to zero to suppress all complaints; set it to a large number to prevent complaints from being suppressed.
show complaints
Displays how many symbol complaints {No value for ‘GDBN’} is permitted to produce.
By default, {No value for ‘GDBN’} is cautious, and asks what sometimes seems to be a lot of stupid questions to confirm certain commands. For example, if you try to run a program which is already running:
({No value for `GDBP'}) run The program being debugged has been started already. Start it from the beginning? (y or n)
If you are willing to unflinchingly face the consequences of your own commands, you can disable this “feature”:
set confirm off
Disables confirmation requests.
set confirm on
Enables confirmation requests (the default).
show confirm
Displays state of confirmation requests.
Some systems allow individual object files that make up your program to be replaced without stopping and restarting your program. If you are running on one of these systems, you can allow {No value for ‘GDBN’} to reload the symbols for automatically relinked modules:
set symbol-reloading on
Replace symbol definitions for the corresponding source file when an object file with a particular name is seen again.
set symbol-reloading off
Do not replace symbol definitions when re-encountering object files of
the same name. This is the default state; if you are not running on a
system that permits automatically relinking modules, you should leave
symbol-reloading
off, since otherwise {No value for ‘GDBN’} may discard symbols
when linking large programs, that may contain several modules (from
different directories or libraries) with the same name.
show symbol-reloading
Show the current on
or off
setting.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Aside from breakpoint commands (see section Breakpoint command lists), {No value for ‘GDBN’} provides two ways to store sequences of commands for execution as a unit: user-defined commands and command files.
15.1 User-defined commands | ||
15.2 User-defined command hooks | ||
15.3 Command files | ||
15.4 Commands for controlled output |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A user-defined command is a sequence of {No value for ‘GDBN’} commands to which you
assign a new name as a command. This is done with the define
command.
define commandname
Define a command named commandname. If there is already a command by that name, you are asked to confirm that you want to redefine it.
The definition of the command is made up of other {No value for ‘GDBN’} command lines,
which are given following the define
command. The end of these
commands is marked by a line containing end
.
document commandname
Give documentation to the user-defined command commandname. The
command commandname must already be defined. This command reads
lines of documentation just as define
reads the lines of the
command definition, ending with end
. After the document
command is finished, help
on command commandname displays
the documentation you have specified.
You may use the document
command again to change the
documentation of a command. Redefining the command with define
does not change the documentation.
help user-defined
List all user-defined commands, with the first line of the documentation (if any) for each.
show user
show user commandname
Display the {No value for ‘GDBN’} commands used to define commandname (but not its documentation). If no commandname is given, display the definitions for all user-defined commands.
User-defined commands do not take arguments. When they are executed, the commands of the definition are not printed. An error in any command stops execution of the user-defined command.
Commands that would ask for confirmation if used interactively proceed without asking when used inside a user-defined command. Many {No value for ‘GDBN’} commands that normally print messages to say what they are doing omit the messages when used in a user-defined command.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You may define hooks, which are a special kind of user-defined command. Whenever you run the command ‘foo’, if the user-defined command ‘hook-foo’ exists, it is executed (with no arguments) before that command.
In addition, a pseudo-command, ‘stop’ exists. Defining (‘hook-stop’) makes the associated commands execute every time execution stops in your program: before breakpoint commands are run, displays are printed, or the stack frame is printed.
For example, to ignore SIGALRM
signals while
single-stepping, but treat them normally during normal execution,
you could define:
define hook-stop handle SIGALRM nopass end define hook-run handle SIGALRM pass end define hook-continue handle SIGLARM pass end
You can define a hook for any single-word command in {No value for ‘GDBN’}, but
not for command aliases; you should define a hook for the basic command
name, e.g. backtrace
rather than bt
.
If an error occurs during the execution of your hook, execution of
{No value for ‘GDBN’} commands stops and {No value for ‘GDBN’} issues a prompt
(before the command that you actually typed had a chance to run).
If you try to define a hook which does not match any known command, you
get a warning from the define
command.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A command file for {No value for ‘GDBN’} is a file of lines that are {No value for ‘GDBN’} commands. Comments (lines starting with #) may also be included. An empty line in a command file does nothing; it does not mean to repeat the last command, as it would from the terminal.
When you start {No value for ‘GDBN’}, it automatically executes commands from its
init files. These are files named ‘{No value for `GDBINIT'}’.
{No value for ‘GDBN’} reads the init file (if any) in your home directory, then
processes command line options and operands, and then reads the init
file (if any) in the current working directory. This is so the init
file in your home directory can set options (such as set
complaints
) which affect the processing of the command line options and
operands. The init files are not executed if you use the ‘-nx’
option; see section Choosing modes.
You can also request the execution of a command file with the
source
command:
source filename
Execute the command file filename.
The lines in a command file are executed sequentially. They are not printed as they are executed. An error in any command terminates execution of the command file.
Commands that would ask for confirmation if used interactively proceed without asking when used in a command file. Many {No value for ‘GDBN’} commands that normally print messages to say what they are doing omit the messages when called from command files.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
During the execution of a command file or a user-defined command, normal {No value for ‘GDBN’} output is suppressed; the only output that appears is what is explicitly printed by the commands in the definition. This section describes three commands useful for generating exactly the output you want.
echo text
Print text. Nonprinting characters can be included in text using C escape sequences, such as ‘\n’ to print a newline. No newline is printed unless you specify one. In addition to the standard C escape sequences, a backslash followed by a space stands for a space. This is useful for displaying a string with spaces at the beginning or the end, since leading and trailing spaces are otherwise trimmed from all arguments. To print ‘ and foo = ’, use the command ‘echo \ and foo = \ ’.
A backslash at the end of text can be used, as in C, to continue the command onto subsequent lines. For example,
echo This is some text\n\ which is continued\n\ onto several lines.\n
produces the same output as
echo This is some text\n echo which is continued\n echo onto several lines.\n
output expression
Print the value of expression and nothing but that value: no newlines, no ‘$nn = ’. The value is not entered in the value history either. See section Expressions, for more information on expressions.
output/fmt expression
Print the value of expression in format fmt. You can use
the same formats as for print
. See section Output formats, for more information.
printf string, expressions…
Print the values of the expressions under the control of string. The expressions are separated by commas and may be either numbers or pointers. Their values are printed as specified by string, exactly as if your program were to execute the C subroutine
printf (string, expressions…);
For example, you can print two values in hex like this:
printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
The only backslash-escape sequences that you can use in the format string are the simple ones that consist of backslash followed by a letter.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A special interface allows you to use GNU Emacs to view (and edit) the source files for the program you are debugging with {No value for ‘GDBN’}.
To use this interface, use the command M-x gdb in Emacs. Give the executable file you want to debug as an argument. This command starts {No value for ‘GDBN’} as a subprocess of Emacs, with input and output through a newly created Emacs buffer.
Using {No value for ‘GDBN’} under Emacs is just like using {No value for ‘GDBN’} normally except for two things:
This applies both to {No value for ‘GDBN’} commands and their output, and to the input and output done by the program you are debugging.
This is useful because it means that you can copy the text of previous commands and input them again; you can even use parts of the output in this way.
All the facilities of Emacs’ Shell mode are available for interacting with your program. In particular, you can send signals the usual way—for example, C-c C-c for an interrupt, C-c C-z for a stop.
Each time {No value for ‘GDBN’} displays a stack frame, Emacs automatically finds the source file for that frame and puts an arrow (‘=>’) at the left margin of the current line. Emacs uses a separate buffer for source display, and splits the screen to show both your {No value for ‘GDBN’} session and the source.
Explicit {No value for ‘GDBN’} list
or search commands still produce output as
usual, but you probably have no reason to use them from Emacs.
Warning: If the directory where your program resides is not your current directory, it can be easy to confuse Emacs about the location of the source files, in which case the auxiliary display buffer does not appear to show your source. {No value for ‘GDBN’} can find programs by searching your environment’s
PATH
variable, so the {No value for ‘GDBN’} input and output session proceeds normally; but Emacs does not get enough information back from {No value for ‘GDBN’} to locate the source files in this situation. To avoid this problem, either start {No value for ‘GDBN’} mode from the directory where your program resides, or specify a full path name when prompted for the M-x gdb argument.A similar confusion can result if you use the {No value for ‘GDBN’}
file
command to switch to debugging a program in some other location, from an existing {No value for ‘GDBN’} buffer in Emacs.
By default, M-x gdb calls the program called ‘gdb’. If
you need to call {No value for ‘GDBN’} by a different name (for example, if you keep
several configurations around, with different names) you can set the
Emacs variable gdb-command-name
; for example,
(setq gdb-command-name "mygdb")
(preceded by ESC ESC, or typed in the *scratch*
buffer, or
in your ‘.emacs’ file) makes Emacs call the program named
“mygdb
” instead.
In the {No value for ‘GDBN’} I/O buffer, you can use these special Emacs commands in addition to the standard Shell mode commands:
Describe the features of Emacs’ {No value for ‘GDBN’} Mode.
Execute to another source line, like the {No value for ‘GDBN’} step
command; also
update the display window to show the current file and location.
Execute to next source line in this function, skipping all function
calls, like the {No value for ‘GDBN’} next
command. Then update the display window
to show the current file and location.
Execute one instruction, like the {No value for ‘GDBN’} stepi
command; update
display window accordingly.
Execute to next instruction, using the {No value for ‘GDBN’} nexti
command; update
display window accordingly.
Execute until exit from the selected stack frame, like the {No value for ‘GDBN’}
finish
command.
Continue execution of your program, like the {No value for ‘GDBN’} continue
command.
Warning: In Emacs v19, this command is C-c C-p.
Go up the number of frames indicated by the numeric argument
(see Numeric Arguments in The GNU Emacs Manual),
like the {No value for ‘GDBN’} up
command.
Warning: In Emacs v19, this command is C-c C-u.
Go down the number of frames indicated by the numeric argument, like the
{No value for ‘GDBN’} down
command.
Warning: In Emacs v19, this command is C-c C-d.
Read the number where the cursor is positioned, and insert it at the end
of the {No value for ‘GDBN’} I/O buffer. For example, if you wish to disassemble code
around an address that was displayed earlier, type disassemble;
then move the cursor to the address display, and pick up the
argument for disassemble
by typing C-x &.
You can customize this further by defining elements of the list
gdb-print-command
; once it is defined, you can format or
otherwise process numbers picked up by C-x & before they are
inserted. A numeric argument to C-x & indicates that you
wish special formatting, and also acts as an index to pick an element of the
list. If the list element is a string, the number to be inserted is
formatted using the Emacs function format
; otherwise the number
is passed as an argument to the corresponding list element.
In any source file, the Emacs command C-x SPC (gdb-break
)
tells {No value for ‘GDBN’} to set a breakpoint on the source line point is on.
If you accidentally delete the source-display buffer, an easy way to get
it back is to type the command f
in the {No value for ‘GDBN’} buffer, to
request a frame display; when you run under Emacs, this recreates
the source buffer if necessary to show you the context of the current
frame.
The source files displayed in Emacs are in ordinary Emacs buffers which are visiting the source files in the usual way. You can edit the files with these buffers if you wish; but keep in mind that {No value for ‘GDBN’} communicates with Emacs in terms of line numbers. If you add or delete lines from the text, the line numbers that {No value for ‘GDBN’} knows cease to correspond properly with the code.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Your bug reports play an essential role in making {No value for ‘GDBN’} reliable.
Reporting a bug may help you by bringing a solution to your problem, or it may not. But in any case the principal function of a bug report is to help the entire community by making the next version of {No value for ‘GDBN’} work better. Bug reports are your contribution to the maintenance of {No value for ‘GDBN’}.
In order for a bug report to serve its purpose, you must include the information that enables us to fix the bug.
17.1 Have you found a bug? | ||
17.2 How to report bugs |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you are not sure whether you have found a bug, here are some guidelines:
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A number of companies and individuals offer support for GNU products. If you obtained {No value for ‘GDBN’} from a support organization, we recommend you contact that organization first.
You can find contact information for many support companies and individuals in the file ‘etc/SERVICE’ in the GNU Emacs distribution.
In any event, we also recommend that you send bug reports for {No value for ‘GDBN’} to one of these addresses:
bug-gdb@prep.ai.mit.edu {ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-gdb
Do not send bug reports to ‘info-gdb’, or to ‘help-gdb’, or to any newsgroups. Most users of {No value for ‘GDBN’} do not want to receive bug reports. Those that do, have arranged to receive ‘bug-gdb’.
The mailing list ‘bug-gdb’ has a newsgroup ‘gnu.gdb.bug’ which serves as a repeater. The mailing list and the newsgroup carry exactly the same messages. Often people think of posting bug reports to the newsgroup instead of mailing them. This appears to work, but it has one problem which can be crucial: a newsgroup posting often lacks a mail path back to the sender. Thus, if we need to ask for more information, we may be unable to reach you. For this reason, it is better to send bug reports to the mailing list.
As a last resort, send bug reports on paper to:
GNU Debugger Bugs Free Software Foundation 545 Tech Square Cambridge, MA 02139
The fundamental principle of reporting bugs usefully is this: report all the facts. If you are not sure whether to state a fact or leave it out, state it!
Often people omit facts because they think they know what causes the problem and assume that some details do not matter. Thus, you might assume that the name of the variable you use in an example does not matter. Well, probably it does not, but one cannot be sure. Perhaps the bug is a stray memory reference which happens to fetch from the location where that name is stored in memory; perhaps, if the name were different, the contents of that location would fool the debugger into doing the right thing despite the bug. Play it safe and give a specific, complete example. That is the easiest thing for you to do, and the most helpful.
Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new to us. It is not as important as what happens if the bug is already known. Therefore, always write your bug reports on the assumption that the bug has not been reported previously.
Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” Those bug reports are useless, and we urge everyone to refuse to respond to them except to chide the sender to report bugs properly.
To enable us to fix the bug, you should include all these things:
show version
.
Without this, we will not know whether there is any point in looking for the bug in the current version of {No value for ‘GDBN’}.
If we were to try to guess the arguments, we would probably guess wrong and then we might not encounter the bug.
Of course, if the bug is that {No value for ‘GDBN’} gets a fatal signal, then we will certainly notice it. But if the bug is incorrect output, we might not notice unless it is glaringly wrong. We are human, after all. You might as well not give us a chance to make a mistake.
Even if the problem you experience is a fatal signal, you should still say so explicitly. Suppose something strange is going on, such as, your copy of {No value for ‘GDBN’} is out of synch, or you have encountered a bug in the C library on your system. (This has happened!) Your copy might crash and ours would not. If you told us to expect a crash, then when ours fails to crash, we would know that the bug was not happening for us. If you had not told us to expect a crash, then we would not be able to draw any conclusion from our observations.
The line numbers in our development sources will not match those in your sources. Your line numbers would convey no useful information to us.
Here are some things that are not necessary:
Often people who encounter a bug spend a lot of time investigating which changes to the input file will make the bug go away and which changes will not affect it.
This is often time consuming and not very useful, because the way we will find the bug is by running a single example under the debugger with breakpoints, not by pure deduction from a series of examples. We recommend that you save your time for something else.
Of course, if you can find a simpler example to report instead of the original one, that is a convenience for us. Errors in the output will be easier to spot, running under the debugger will take less time, and so on.
However, simplification is not vital; if you do not want to do this, report the bug anyway and send us the entire test case you used.
A patch for the bug does help us if it is a good one. But do not omit the necessary information, such as the test case, on the assumption that a patch is all we need. We might see problems with your patch and decide to fix the problem another way, or we might not understand it at all.
Sometimes with a program as complicated as {No value for ‘GDBN’} it is very hard to construct an example that will make the program follow a certain path through the code. If you do not send us the example, we will not be able to construct one, so we will not be able to verify that the bug is fixed.
And if we cannot understand what bug you are trying to fix, or why your patch should be an improvement, we will not install it. A test case will help us to understand.
Such guesses are usually wrong. Even we cannot guess right about such things without first using the debugger to find the facts.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The GDB 4 release includes an already-formatted reference card, ready for printing with PostScript or GhostScript, in the ‘gdb’ subdirectory of the main source directory(3). If you can use PostScript or GhostScript with your printer, you can print the reference card immediately with ‘refcard.ps’.
The release also includes the source for the reference card. You can format it, using TeX, by typing:
make refcard.dvi
The GDB reference card is designed to print in landscape mode on US “letter” size paper; that is, on a sheet 11 inches wide by 8.5 inches high. You will need to specify this form of printing as an option to your DVI output program.
All the documentation for GDB comes as part of the machine-readable
distribution. The documentation is written in Texinfo format, which is
a documentation system that uses a single source file to produce both
on-line information and a printed manual. You can use one of the Info
formatting commands to create the on-line version of the documentation
and TeX (or texi2roff
) to typeset the printed version.
GDB includes an already formatted copy of the on-line Info version of
this manual in the ‘gdb’ subdirectory. The main Info file is
‘gdb-version-number/gdb/gdb.info’, and it refers to
subordinate files matching ‘gdb.info*’ in the same directory. If
necessary, you can print out these files, or read them with any editor;
but they are easier to read using the info
subsystem in GNU Emacs
or the standalone info
program, available as part of the GNU
Texinfo distribution.
If you want to format these Info files yourself, you need one of the
Info formatting programs, such as texinfo-format-buffer
or
makeinfo
.
If you have makeinfo
installed, and are in the top level GDB
source directory (‘gdb-{No value for `GDBVN'}’, in the case of version {No value for ‘GDBVN’}), you can
make the Info file by typing:
cd gdb make gdb.info
If you want to typeset and print copies of this manual, you need TeX, a program to print its DVI output files, and ‘texinfo.tex’, the Texinfo definitions file.
TeX is a typesetting program; it does not print files directly, but produces output files called DVI files. To print a typeset document, you need a program to print DVI files. If your system has TeX installed, chances are it has such a program. The precise command to use depends on your system; lpr -d is common; another (for PostScript devices) is dvips. The DVI print command may require a file name without any extension or a ‘.dvi’ extension.
TeX also requires a macro definitions file called ‘texinfo.tex’. This file tells TeX how to typeset a document written in Texinfo format. On its own, TeX cannot read, much less typeset a Texinfo file. ‘texinfo.tex’ is distributed with GDB and is located in the ‘gdb-version-number/texinfo’ directory.
If you have TeX and a DVI printer program installed, you can typeset and print this manual. First switch to the the ‘gdb’ subdirectory of the main source directory (for example, to ‘gdb-{No value for `GDBVN'}/gdb’) and then type:
make gdb.dvi
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
GDB comes with a configure
script that automates the process
of preparing GDB for installation; you can then use make
to
build the gdb
program.
The GDB distribution includes all the source code you need for GDB in a single directory, whose name is usually composed by appending the version number to ‘gdb’.
For example, the GDB version {No value for ‘GDBVN’} distribution is in the ‘gdb-{No value for `GDBVN'}’ directory. That directory contains:
gdb-{No value for `GDBVN'}/configure (and supporting files)
script for configuring GDB and all its supporting libraries.
gdb-{No value for `GDBVN'}/gdb
the source specific to GDB itself
gdb-{No value for `GDBVN'}/bfd
source for the Binary File Descriptor library
gdb-{No value for `GDBVN'}/include
GNU include files
gdb-{No value for `GDBVN'}/libiberty
source for the ‘-liberty’ free software library
gdb-{No value for `GDBVN'}/opcodes
source for the library of opcode tables and disassemblers
gdb-{No value for `GDBVN'}/readline
source for the GNU command-line interface
gdb-{No value for `GDBVN'}/glob
source for the GNU filename pattern-matching subroutine
gdb-{No value for `GDBVN'}/mmalloc
source for the GNU memory-mapped malloc package
The simplest way to configure and build GDB is to run configure
from the ‘gdb-version-number’ source directory, which in
this example is the ‘gdb-{No value for `GDBVN'}’ directory.
First switch to the ‘gdb-version-number’ source directory
if you are not already in it; then run configure
. Pass the
identifier for the platform on which GDB will run as an
argument.
For example:
cd gdb-{No value for `GDBVN'} ./configure host make
where host is an identifier such as ‘sun4’ or
‘decstation’, that identifies the platform where GDB will run.
(You can often leave off host; configure
tries to guess the
correct value by examining your system.)
Running ‘configure host’ and then running make
builds the
‘bfd’, ‘readline’, ‘mmalloc’, and ‘libiberty’
libraries, then gdb
itself. The configured source files, and the
binaries, are left in the corresponding source directories.
configure
is a Bourne-shell (/bin/sh
) script; if your
system does not recognize this automatically when you run a different
shell, you may need to run sh
on it explicitly:
sh configure host
If you run configure
from a directory that contains source
directories for multiple libraries or programs, such as the
‘gdb-{No value for `GDBVN'}’ source directory for version {No value for ‘GDBVN’}, configure
creates configuration files for every directory level underneath (unless
you tell it not to, with the ‘--norecursion’ option).
You can run the configure
script from any of the
subordinate directories in the GDB distribution if you only want to
configure that subdirectory, but be sure to specify a path to it.
For example, with version {No value for ‘GDBVN’}, type the following to configure only
the bfd
subdirectory:
cd gdb-{No value for `GDBVN'}/bfd ../configure host
You can install {No value for `GDBP'}
anywhere; it has no hardwired paths.
However, you should make sure that the shell on your path (named by
the ‘SHELL’ environment variable) is publicly readable. Remember
that GDB uses the shell to start your program—some systems refuse to
let GDB debug child processes whose programs are not readable.
B.1 Compiling GDB in another directory | ||
B.2 Specifying names for hosts and targets | ||
B.3 configure options | Summary of options for configure |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you want to run GDB versions for several host or target machines,
you need a different gdb
compiled for each combination of
host and target. configure
is designed to make this easy by
allowing you to generate each configuration in a separate subdirectory,
rather than in the source directory. If your make
program
handles the ‘VPATH’ feature (GNU make
does), running
make
in each of these directories builds the gdb
program specified there.
To build gdb
in a separate directory, run configure
with the ‘--srcdir’ option to specify where to find the source.
(You also need to specify a path to find configure
itself from your working directory. If the path to configure
would be the same as the argument to ‘--srcdir’, you can leave out
the ‘--srcdir’ option; it is assumed.)
For example, with version {No value for ‘GDBVN’}, you can build GDB in a separate directory for a Sun 4 like this:
cd gdb-{No value for `GDBVN'} mkdir ../gdb-sun4 cd ../gdb-sun4 ../gdb-{No value for `GDBVN'}/configure sun4 make
When configure
builds a configuration using a remote source
directory, it creates a tree for the binaries with the same structure
(and using the same names) as the tree under the source directory. In
the example, you’d find the Sun 4 library ‘libiberty.a’ in the
directory ‘gdb-sun4/libiberty’, and GDB itself in
‘gdb-sun4/gdb’.
One popular reason to build several GDB configurations in separate
directories is to configure GDB for cross-compiling (where GDB
runs on one machine—the host—while debugging programs that run on
another machine—the target). You specify a cross-debugging target by
giving the ‘--target=target’ option to configure
.
When you run make
to build a program or library, you must run
it in a configured directory—whatever directory you were in when you
called configure
(or one of its subdirectories).
The Makefile
that configure
generates in each source
directory also runs recursively. If you type make
in a source
directory such as ‘gdb-{No value for `GDBVN'}’ (or in a separate configured
directory configured with ‘--srcdir=path/gdb-{No value for `GDBVN'}’), you
will build all the required libraries, and then build GDB.
When you have multiple hosts or targets configured in separate
directories, you can run make
on them in parallel (for example,
if they are NFS-mounted on each of the hosts); they will not interfere
with each other.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The specifications used for hosts and targets in the configure
script are based on a three-part naming scheme, but some short predefined
aliases are also supported. The full naming scheme encodes three pieces
of information in the following pattern:
architecture-vendor-os
For example, you can use the alias sun4
as a host argument,
or as the value for target in a --target=target
option. The equivalent full name is ‘sparc-sun-sunos4’.
The configure
script accompanying GDB does not provide
any query facility to list all supported host and target names or
aliases. configure
calls the Bourne shell script
config.sub
to map abbreviations to full names; you can read the
script, if you wish, or you can use it to test your guesses on
abbreviations—for example:
% sh config.sub sun4 sparc-sun-sunos4.1.1 % sh config.sub sun3 m68k-sun-sunos4.1.1 % sh config.sub decstation mips-dec-ultrix4.2 % sh config.sub hp300bsd m68k-hp-bsd % sh config.sub i386v i386-unknown-sysv % sh config.sub i786v Invalid configuration `i786v': machine `i786v' not recognized
config.sub
is also distributed in the GDB source
directory (‘gdb-{No value for `GDBVN'}’, for version {No value for ‘GDBVN’}).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
configure
optionsHere is a summary of the configure
options and arguments that
are most often useful for building {No value for ‘GDBN’}. configure
also has
several other options not listed here. See (configure.info)What Configure Does, for a full explanation of configure
.
configure [--help] [--prefix=dir] [--srcdir=path] [--norecursion] [--rm] [--target=target] host
You may introduce options with a single ‘-’ rather than ‘--’ if you prefer; but you may abbreviate option names if you use ‘--’.
--help
Display a quick summary of how to invoke configure
.
-prefix=dir
Configure the source to install programs and files under directory ‘dir’.
--srcdir=path
Warning: using this option requires GNU make
, or another
make
that implements the VPATH
feature.
Use this option to make configurations in directories separate from the
GDB source directories. Among other things, you can use this to
build (or maintain) several configurations simultaneously, in separate
directories. configure
writes configuration specific files in
the current directory, but arranges for them to use the source in the
directory path. configure
creates directories under
the working directory in parallel to the source directories below
path.
--norecursion
Configure only the directory level where configure
is executed; do not
propagate configuration to subdirectories.
--rm
Remove files otherwise built during configuration.
--target=target
Configure GDB for cross-debugging programs running on the specified target. Without this option, GDB is configured to debug programs that run on the same machine (host) as GDB itself.
There is no convenient way to generate a list of all available targets.
host …
Configure GDB to run on the specified host.
There is no convenient way to generate a list of all available hosts.
configure
accepts other options, for compatibility with
configuring other GNU tools recursively; but these are the only
options that affect GDB or its supporting libraries.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Jump to: | #
$
/
@
{
A B C D E F G H I J K L M N O P Q R S T U V W X |
---|
Jump to: | #
$
/
@
{
A B C D E F G H I J K L M N O P Q R S T U V W X |
---|
[Top] | [Contents] | [Index] | [ ? ] |
‘b’ cannot be used because these format letters are also
used with the x
command, where ‘b’ stands for “byte”;
see section Examining memory.
This is a way of removing
one word from the stack, on machines where stacks grow downward in
memory (most machines, nowadays). This assumes that the innermost
stack frame is selected; setting $sp
is not allowed when other
stack frames are selected. To pop entire frames off the stack,
regardless of machine architecture, use return
;
see section Returning from a function.
In ‘gdb-{No value for `GDBVN'}/gdb/refcard.ps’ of the version {No value for ‘GDBVN’} release.
[Top] | [Contents] | [Index] | [ ? ] |
[Top] | [Contents] | [Index] | [ ? ] |
This document was generated on January 12, 2025 using texi2html 5.0.
The buttons in the navigation panels have the following meaning:
Button | Name | Go to | From 1.2.3 go to |
---|---|---|---|
[ << ] | FastBack | Beginning of this chapter or previous chapter | 1 |
[ < ] | Back | Previous section in reading order | 1.2.2 |
[ Up ] | Up | Up section | 1.2 |
[ > ] | Forward | Next section in reading order | 1.2.4 |
[ >> ] | FastForward | Next chapter | 2 |
[Top] | Top | Cover (top) of document | |
[Contents] | Contents | Table of contents | |
[Index] | Index | Index | |
[ ? ] | About | About (help) |
where the Example assumes that the current position is at Subsubsection One-Two-Three of a document of the following structure:
This document was generated on January 12, 2025 using texi2html 5.0.